
SPADE: A System for Prompt
Analysis and Delta-Based
Evaluation
Shreya Shankar
November 2023

1

How do people write custom LLM pipelines?

• Consider an example use of LLMs: an AI-powered
personal stylist

• Prompt: “what should I wear to a conference?”

• LLM response: “Certainly, I can help you decide what
to wear to your conference!….”

• A developer needs to turn this into a template that
they can run for different queries and reliably extract
output from without human supervision

2

Custom LLM pipelines

• Chat GPT prompt: “what should I wear to a conference?”

• A prompt template for an automated pipeline: “I own {gender}.
Suggest 3+ items to wear to {event} in a semicolon-separated list”

3

Placeholder in a
prompt template

Inputs

{“gender”: “womenswear”,
“event”: “a wedding in Dallas”}

{“gender”: “menswear”, “event”:
“my company holiday party”}

{“gender”: “womenswear”,
“event”: “hiking Mt. Diablo”}

{“gender”: “menswear”, “event”:
“a friend’s 30th bday party”}

Prompt
Template

Formatted
prompt

LLM
Response

I own womenswear. In a semicolon-
separated list, suggest 3+ items to a

wedding in Dallas

Elegant Evening Gown;
Strappy Sandals;

Clutch Bag

Monitoring LLM Response Quality is Hard

• Prompt templates get deployed to
production with no clear sense of
how well the pipeline will perform

• Accuracy and “good” are poorly
defined for free-form responses. No
clear way to evaluate custom tasks.

• Holistic evaluation may be
subjective, but every task has some
objective indicators of correctness

• Can we automatically recommend
assertions for LLM pipelines?

4

“We have ground truth
guidance, not labels. It takes a
human to see if a response is

good.”

“In traditional ML, you have
statistics to optimize for. But now I

don’t know how to optimize for vibes; I
don’t know how to optimize for

vibes”

SPADE ♠: System for Prompt Analysis and Delta-Based Evaluation

1. Identify phrases in the
prompt that indicate
potential assertions

2. Write assertions as Python
functions that operate on
formatted prompt & response
pairs

3. Reduce redundancies &
inaccuracies in the
assertions

5

…For wedding-related events, don’t suggest any white
items unless the client explicitly states that they want to
be styled for their wedding…

def check_excludes_white_wedding(prompt: str, response: str) -> bool:
 """
 This function checks if the response does not include white items
for wedding-related events,
 unless explicitly stated by the client.
 """
 # Check if event is wedding-related
 if "wedding" in prompt.lower() and "my wedding" not in
prompt.lower():
 # Check if the response includes the word "white"
 return "white" not in response.lower()
 else:
 return True

Identifying Assertion Concepts

• Without explicitly asking the
developer to write assertion
criteria…

• What’s important to the
engineer?

• What LLMs are uniquely
bad at?

• Prompt template provenance

6

Version Prompt Template

1 Suggest 5 apparel items to wear to {event}.
Return your answer as a Python list of strings.

2
A client ({client_genders}) wants to be styled
for {event}. Suggest 5 apparel items
for {client_pronoun} to wear. Return your
answer as a Python list of strings.

3

A client ({client_genders}) wants to be styled
for {event}. Suggest 5 apparel items
for {client_pronoun} to wear. For wedding-
related events, don’t suggest any white
items unless the client explicitly states that
they want to be styled for their wedding.
Return your answer as a python list of strings.

Identifying Assertion Concepts

• An edit to a prompt can indicate potential
assertion concepts that developers care
about!

• E.g., If someone adds “Don’t include X”
then LLM responses should never include X

• Challenging to consider conditionals, e.g.,
“For wedding-related events, don’t suggest
white”

• Looking at the deltas (i.e., diffs) between
prompt template versions for 19 pipelines
from LangChain, we identified 9 types of
deltas

7

Identifying Assertion Concepts

• We use an LLM to dissect a
prompt into the relevant
categories and concepts

• Can be done with open-
source models like Mistral or
Llama

• Runs for every prompt
template version

• A concept is associated with
a category, prompt
template, and source (phrase
in the prompt template)

8

Category Example Addition or Edit to a Prompt Concept

Response Format
Instruction

“Return your answer as a Python dictionary” Can be parsed as dictionary

Example
Demonstration

“Here is an example question and response:
Question: What should I wear to a workout class?
Answer: {“tops”: “black moisture-wicking tank top”,
“shoes”: “black Nike Pegasus…”

Dictionary includes keys “tops,”
“bottoms,” etc.

Prompt
Clarification

“Return Give me a descriptive list” N/A (as long as the meaning of
the prompt is unchanged)

Workflow
Description

“First, identify the dress code of the event. Then…” Dress code is correct for the
event

Data Integration ”The user does not like {dislikes_placeholder}” N/A

Quantity
Instruction

“The outfit must have at least 3 items” >= 3 items

Inclusion
Instruction

“Make sure your outfit is complete, i.e., it includes
a top, shoe, and lower-body garment”

Dictionary includes keys “tops,”
“shoes,” “bottoms”

Exclusion
Instruction

“Do not suggest sneakers for wedding-related
events”

“Sneakers” not in response if
“wedding” in example

Qualitative
Criteria

“Include a statement piece in your suggestion” Check if there is a statement
piece (need LLM or human)

SPADE ♠: System for Prompt Analysis and Delta-Based Evaluation

1. Identify phrases in the prompt that
indicate potential assertions

2. Write assertions as Python
functions that operate on
formatted prompt & response pairs

3. Reduce redundancies &
inaccuracies in the assertions

9

Write Assertions as Python Functions

• Given the concepts found in a prompt
template, e.g., “quantity instruction” and “>= 3
items,” GPT-4 generates Python functions

• Functions can call ask_llm

• Functions can batch concepts

• Depending on how many prompt versions exist,
10s or even 100s of assertions get generated! 🤯

• We could only generate assertions for the last
prompt version, but we may lose important
criteria, and/or the LLM may not recall all
criteria if the prompt is very long

10

SPADE ♠: System for Prompt Analysis and Delta-Based Evaluation

1. Identify phrases in the prompt that
indicate potential assertions

2. Write assertions as Python functions
that operate on formatted prompt &
response pairs

3. Reduce redundancies &
inaccuracies in the assertions

11

Assertion Examples

• ask_llm(“Is this outfit appropriate for the weather?”)

• ask_llm(“Is this outfit appropriate for the temperature and season?”)

• ask_llm(“Does this outfit make sense given the possible weather?”)

def check conciseness(prompt, response):

return len(response.split(“ “)) < 5

12

Eliminate Redundant Assertions

• We want the fewest # of assertions where our
chosen assertions:

• (Recall constraint) Cover all the actual bad
examples

• (Accuracy constraint) Don’t fail too many
examples that the developer believes to be
good, i.e., “false failure rate”

• Since this is pre-deployment, we can’t assume
access to a representative set of examples

• Recall constraint -> Cover all the concepts found
by SPADE. Need to do concept deduplication/
entity resolution to get the set of all concepts.

13

def check_professional(prompt: str,
response: str) -> bool:
 """
 This function checks if the response
includes professional attire for work-
related formal events.
 """
 return ask_llm(f”Is the outfit
suggestion {response} professional enough
for the event described in {prompt}?”)

Might not be 100%
accurate!

Eliminate Redundant Assertions

• Concept deduplication — entity resolution problem

• Each assertion is associated with 1+ concepts (e.g.,
check_num_items checks ability to parse into a list
& number of items)

• Each concept is associated with a category, prompt
template version, & origin (phrase in prompt)

• Blocking rules:

• Concepts with same category from our
taxonomy

• Concepts with same origin

• Concepts from different template versions

14

Concept 1

Concept 2

Concept 3

Assertion 1

Assertion 2

Origin: first sentence

Origin: last sentence

Category: Inclusion Instructions

Prompt Template Version 1

Prompt Template Version 2

Category: Quantity

Eliminate Redundant Assertions

• Each assertion has 1+ concepts, 1+ categories, and a version #

• Estimate accuracies with a sample of synthetically-generated and human-
labeled ~50 examples

• Set cover problem:

• Let f_i = assertion i

• Let ffr_i = % examples that are good and f_i fails, i.e., false failure rate

• Minimize sum ffr_i * z_i, where z_i indicates whether f_i is chosen, subject to
coverage constraint?

15

ffr_{i and j} <=
ffr_i + ffr_j

Eliminate Redundant Assertions

• Set cover problem:

• Let f_i = assertion i

• Let ffr_i = % examples that are good and f_i fails, i.e., false failure rate

• Minimize sum ffr_i * z_i, where z_i indicates whether f_i is chosen, subject to coverage
constraint?

• Not fully optimal, because ffr of the conjunction of chosen assertions F’ can be less than
the sum of individual ffr’s for f_i in F’

• max (ffr_i, ffr_j) <= ffr_{i and j} <= sum (ffr_i, ffr_j)

• Can implement a branch & bound solution. Branch step = including or excluding a
function f_i, bound when ffr > threshold, # functions > size of best set so far, or feasibility

16

SPADE ♠: System for Prompt Analysis and Delta-Based Evaluation

1. Identify phrases in the prompt that
indicate potential assertions

2. Write assertions as Python functions
that operate on formatted prompt &
response pairs

3. Reduce redundancies &
inaccuracies in the assertions

17

Summary and Looking Ahead

• Deploying custom LLM pipelines requires some assertions

• It’s hard to come up with assertions automatically, without much data or
insight into what developers care about

• To align with what developers care about, we analyze edits to prompts

• To create assertions, we use LLMs + implement a pipeline to remove redundant
assertions

• Need to run experiments

18

