SPADE: A System for Prompt

Analysis and Delta-Based
Evaluation

Shreya Shankar
November 2023

lab

UC Berkeley

How do people write custom LLM pipelines?

e Consider an example use of LLMs: an Al-powered
personal stylist

 Prompt: "what should | wear to a conference?”

e LM response: "Certainly, | can help you decide what
to wear to your conferencel....”

e A developer needs to turn this into a template that
they can run for different queries and reliably extract
output from without human supervision

Custom LLM pipelines

e ., Placeholder in o ”
e Chat GPT prompt: "what should | wear to a < prompt template

e A prompt template for an automated pipeline: “| own {gender}.
Suggest 3+ items to wear to {event} in a semicolon-separated list”

O S,
- ~
Inputs | own womenswear. In a semicolon- Elegant Evening Gown;

separated list, suggest 3+ items to a Strappy Sandals;
wedding in Dallas Clutch Bag

{"gender”: "womenswear”,
“event”: "a wedding in Dallas™}

| Formatted |

{"gender”: “menswear”, “event”: |
“my company holiday party”} g Temp\ote é

| Response |

{"gender”: “"womenswear”,
“event”: “hiking Mt. Diablo”}

{"gender”: "menswear”, “event”:
“a friend’s 30th bday party”}

Monitoring LLM Response Quality is Haro

e Prompt templates get deployed to “We have ground truth
oroduction with no clear sense of guidance, not labels. It takes a

how well the pipeline will perform human to see ide”reSponSG is
good.

e Accuracy and “good” are poorly
defined for free-form responses. No
clear way to evaluate custom tasks.

“In traditional ML, you have

e Holistic evaluation may be statistics to optimize for. But now |
subjective, but every task has some don’t know how to optimize for vibes; |
objective indicators of correctness don’t know how to optimize for

vibes”

e Can we automatically recommend
assertions for LLM pipelines?

SPADE #: System for Prompt Analysis and Delta-Based Evaluation

1. ldentify phrases in the
orompt that indicate
potential assertions

2. Write assertions as Python
functions that operate on
formatted prompt & response
pAIrs

3. Reduce redundancies &
inaccuracies in the
assertions

...For wedding-related events, don’t suggest any white
items unless the client explicitly states that they want to
be styled for their wedding...

|

def check excludes white wedding(prompt: str, response: str) -> bool:

This function checks if the response does not include white items
for wedding-related events,
unless explicitly stated by the client.

Check if event is wedding-related
if "wedding" in prompt.lower() and "my wedding" not in
prompt.lower():
Check if the response includes the word "white"
return "white" not in response.lower ()
else:
return True

[dentifying Assertion Concepts

o Without explicitly asking the
developer to write assertion
criteriq...

e What's important to the
engineer?

e What LLMs are uniquely
bad at?

e Prompt template provenance

Version

Prompt Template

Suggest b apparel items to wear to {event}.
Return your answer as a Python list of strings.

A client ({client_genders}) wants to be styled
for {event}. Suggest 5 apparel items

for {client pronoun} to wear. Return your
answer as a Python list of strings.

A client ({client genders}) wants to be styled
for {event}. Suggest 5 apparel items

for {client_pronoun} to wear. For wedding-
related events, don’t suggest any white
items unless the client explicitly states that
they want to be styled for their wedding.
Return your answer as a python list of strings.

[dentifying Assertion Concepts

e An edit to a prompt can indicate potential
assertion concepts that developers care
about!

e E.g., If someone adds "Don’t include X”
then LLM responses should never include X

e Challenging to consider conditionals, e.g.,

“For wedding-related events, don’t suggest
white”

e Looking at the deltas (i.e., diffs) between
orompt template versions for 19 pipelines
from LangChain, we identified 9 types of
deltas

Structural

Response Format
Instruction

Content-Based

Prompt
Clarification

Data Integration

Inclusion
Instruction

Prompt Edits
Example Workflow
Demonstration Description
Quantity
Instruction
Exclusion

Instruction

Qualitative
Criteria

[dentifying Assertion Concepts

Category | Example Addition or Edit to a Prompt Concept
: i
We use O n LLM to dissect a Response Format | “Return your answer as a Python dictionary” Can be parsed as dictionary
prompt into the relevant Instruction
CategOrieS and COﬂCGptS Example | “Here is an example question and response: Dictionary includes keys “tops,”
Demonstration | Question: What should | wear to a workout class? “bottoms,” etc.

Answer: {"tops”: “black moisture-wicking tank top?,

e Can be done with open-

) 4 Prompt | “Return-Give me a descriptive list” N/A (as long as the meaning of
source models like Mistral or Clarification the prompt is unchanged)
Llama Workflow | “First, identify the dress code of the event. Then...” | Dress code is correct for the

Description event
~ RU NS fOI’ every prom pt Data Integration | "The user does not like {dislikes placeholder}” N/A
tem p|0te Ve rsion Quantity | “The outfit must have at least 3 items” >= 3 items
Instruction
: : . Inclusion | “Make sure your outfit is complete, i.e., it includes | Dictionary includes keys “tops,”
e Aconce IOt is associated with Instruction | a top, shoe, and lower-body garment” “shoes,” “bottoms”
a COltegOl’U , Prom pt Exclusion | “Do not suggest sneakers for wedding-related “Sneakers” not in response if
tem p|0te’ and source (ph rase Instruction | events” “wedding” in example
in the prom pt tem p|Qte) Qualitative | “Include a statement piece in your suggestion” Check if there is a statement
Criteria piece (need LLM or human)

SPADE #: System for Prompt Analysis and Delta-Based Evaluation

1. ldentify phrases in the prompt that
indicate potential assertions

2. Write assertions as Python
functions that operate on
formatted prompt & response pairs

3. Reduce redundancies &
inaccuracies in the assertions

Write Assertions as Python Functions

async def collect_all_evals(prompt_templates: Listlstrl):
evals = |]
for template in prompt_templates:
reply_json, eval_functions, messages = await suggest_evals("", template)
orint(reply_json)

e (Given the concepts found in a prompt L o G
template, e.g., "quantity instruction” and “>= 3
items,” GPT-4 generates Python functions i oy TR

async def check_JSON_format_1(prompt: str, response: str) -> bool:

e Functions can call ask IlIm

e Functions can batch concepts o

json. loads(response)

return True
except json.JSONDecodeError:

* Depending on how many prompt versions exist, i L

10s or even 100s of assertions get generated! & I

async def check_replaced_none(prompt: str, response: str) => bool:

 We could only generate assertions for the last e reepome — 5o tondetresomec)
prompt version, but we may lose important et e el o gisbeuioeiirs
criteria, and/or the LLM may not recall all
criteria if the prompt is very long

async def check_description_inclusion{prompt: str, response: str) — bool:
n L L

loaded response = json. loads({response)

10

SPADE #: System for Prompt Analysis and Delta-Based Evaluation

1. ldentify phrases in the prompt that
indicate potential assertions

2. Write assertions as Python functions
that operate on formatted prompt &
response pairs

3. Reduce redundancies &
inaccuracies in the assertions

i

Assertion Examples

o ask lIm("Is this outfit appropriate for the weather?”)
e ask lIm("Is this outfit appropriate for the temperature and season?”)

e ask lIm("Does this outfit make sense given the possible weather?”)

def check conciseness(prompt, response):

return len(response.split(®™ ")) < 5

12

Fliminate Redundant Assertions

We want the fewest # of assertions where our
chosen assertions:

e (Recall constraint) Cover all the actual bad
examples

e (Accuracy constraint) Don’t fail too many
examples that the developer believes to be
good, i.e., “false failure rate”

e Since this is pre-deployment, we can’t assume
access to a representative set of examples

e Recall constraint -> Cover all the concepts found
by SPADE. Need to do concept deduplication/
entity resolution to get the set of all concepts.

13

def check professional (prompt: str,
response: str) -> bool:

This function checks if the response
includes professional attire for work-
related formal events.

return ask 1llm(f”Is the outfit
suggestion {response} professional enough
for the event described in {prompt}?”)

Might not be 100%
accuratel

Fliminate Redundant Assertions

e Concept deduplication — entity resolution problem

e Each assertion is associated with 1+ concepts (e.g., Category: Inclusion Instructions
check num_items checks ability to parse into a list o
& number of items)

e Each concept is associated with a category, prompt
template version, & origin (phrase in prompt)

e Blocking rules:

e Concepts with same category from our Origin: first sentence

¢ Concept 31
taxonomy y

i Origin: last sentence = |
« Concepts with same origin = = Category: Quantity

e Concepts from different template versions

14

Fliminate Redundant Assertions

e Each assertion has 1+ concepts, 1+ categories, and a version

e Estimate accuracies with a sample of synthetically-generated and human-
labeled ~50 examples

e Set cover problem:
e letf i=assertioni

e Letffr i =% examples that are good and 1 i fails, i.e., false failure rate

e Minimize sum ffr i * z i, where z iindicates whether f iis chosen, subject to
coverage constraint?

15

Fliminate Redundant Assertions

e Set cover problem:
e lLetf i=assertioni
o Let ffr i =% examples that are good and f i fails, i.e., false failure rate

e Minimize sum ffr i * z i, where z iindicates whether f iis chosen, subject to coverage
constraint?

e Not fully optimal, because ffr of the conjunction of chosen assertions F' can be less than
the sum of individual ffr's for f iin F

e max (ffr i, ffr j) <= ffr {i and j} <= sum (ffr i, ffr j)

e Can implement a branch & bound solution. Branch step = including or excluding o
function T _i, bound when ffr > threshold, # functions > size of best set so far, or feasibility

16

SPADE #: System for Prompt Analysis and Delta-Based Evaluation

1. ldentify phrases in the prompt that
indicate potential assertions

2. Write assertions as Python functions
that operate on formatted prompt &
response pairs

3. Reduce redundancies &
inaccuracies in the assertions

17

Summary and Looking Ahead

e Deploying custom LLM pipelines requires some assertions

e |t's hard to come up with assertions automatically, without much data or
insight into what developers care about

e Jo align with what developers care about, we analyze edits to prompts

e Jo create assertions, we use LLMs + implement a pipeline to remove redundant

assertions

e Need to run experiments

18

