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How do people write custom LLM pipelines?

• Consider an example use of LLMs: an AI-powered 
personal stylist 

• Prompt: “what should I wear to a conference?” 

• LLM response: “Certainly, I can help you decide what 
to wear to your conference!….” 

• A developer needs to turn this into a template that 
they can run for different queries and reliably extract 
output from without human supervision
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Custom LLM pipelines

• Chat GPT prompt: “what should I wear to a conference?” 

• A prompt template for an automated pipeline: “I own {gender}. 
Suggest 3+ items to wear to {event} in a semicolon-separated list”
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Placeholder in a 
prompt template

Inputs

{“gender”: “womenswear”, 
“event”: “a wedding in Dallas”}

{“gender”: “menswear”, “event”: 
“my company holiday party”}

{“gender”: “womenswear”, 
“event”: “hiking Mt. Diablo”}

{“gender”: “menswear”, “event”: 
“a friend’s 30th bday party”}

Prompt 
Template

Formatted 
prompt

LLM 
Response

I own womenswear. In a semicolon-
separated list, suggest 3+ items to a 

wedding in Dallas

Elegant Evening Gown; 
Strappy Sandals; 

Clutch Bag



Monitoring LLM Response Quality is Hard

• Prompt templates get deployed to 
production with no clear sense of 
how well the pipeline will perform 

• Accuracy and “good” are poorly 
defined for free-form responses. No 
clear way to evaluate custom tasks. 

• Holistic evaluation may be 
subjective, but every task has some 
objective indicators of correctness 

• Can we automatically recommend 
assertions for LLM pipelines?
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“We have ground truth 
guidance, not labels. It takes a 
human to see if a response is 

good.” 

“In traditional ML, you have 
statistics to optimize for. But now I 

don’t know how to optimize for vibes; I 
don’t know how to optimize for 

vibes”



SPADE ♠: System for Prompt Analysis and Delta-Based Evaluation

1. Identify phrases in the 
prompt that indicate 
potential assertions 

2. Write assertions as Python 
functions that operate on 
formatted prompt & response 
pairs 

3. Reduce redundancies & 
inaccuracies in the 
assertions
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…For wedding-related events, don’t suggest any white 
items unless the client explicitly states that they want to 
be styled for their wedding…

def check_excludes_white_wedding(prompt: str, response: str) -> bool:
    """
    This function checks if the response does not include white items 
for wedding-related events,
    unless explicitly stated by the client.
    """
    # Check if event is wedding-related
    if "wedding" in prompt.lower() and "my wedding" not in 
prompt.lower():
        # Check if the response includes the word "white"
        return "white" not in response.lower()
    else:
        return True



Identifying Assertion Concepts

• Without explicitly asking the 
developer to write assertion 
criteria… 

• What’s important to the 
engineer? 

• What LLMs are uniquely 
bad at? 

• Prompt template provenance
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Version Prompt Template

1 Suggest 5 apparel items to wear to {event}. 
Return your answer as a Python list of strings. 

2
A client ({client_genders}) wants to be styled 
for {event}. Suggest 5 apparel items 
for {client_pronoun} to wear. Return your 
answer as a Python list of strings.

3

A client ({client_genders}) wants to be styled 
for {event}. Suggest 5 apparel items 
for {client_pronoun} to wear. For wedding-
related events, don’t suggest any white 
items unless the client explicitly states that 
they want to be styled for their wedding. 
Return your answer as a python list of strings.



Identifying Assertion Concepts

• An edit to a prompt can indicate potential 
assertion concepts that developers care 
about! 

• E.g., If someone adds “Don’t include X” 
then LLM responses should never include X 

• Challenging to consider conditionals, e.g., 
“For wedding-related events, don’t suggest 
white” 

• Looking at the deltas (i.e., diffs) between 
prompt template versions for 19 pipelines 
from LangChain, we identified 9 types of 
deltas
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Identifying Assertion Concepts

• We use an LLM to dissect a 
prompt into the relevant 
categories and concepts 

• Can be done with open-
source models like Mistral or 
Llama 

• Runs for every prompt 
template version 

• A concept is associated with 
a category, prompt 
template, and source (phrase 
in the prompt template) 
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Category Example Addition or Edit to a Prompt Concept

Response Format 
Instruction

“Return your answer as a Python dictionary” Can be parsed as dictionary

Example 
Demonstration

“Here is an example question and response: 
Question: What should I wear to a workout class? 
Answer: {“tops”: “black moisture-wicking tank top”, 
“shoes”: “black Nike Pegasus…”

Dictionary includes keys “tops,” 
“bottoms,” etc.

Prompt 
Clarification

“Return Give me a descriptive list” N/A (as long as the meaning of 
the prompt is unchanged)

Workflow 
Description

“First, identify the dress code of the event. Then…” Dress code is correct for the 
event

Data Integration ”The user does not like {dislikes_placeholder}” N/A

Quantity 
Instruction

“The outfit must have at least 3 items” >= 3 items

Inclusion 
Instruction

“Make sure your outfit is complete, i.e., it includes 
a top, shoe, and lower-body garment”

Dictionary includes keys “tops,” 
“shoes,” “bottoms”

Exclusion 
Instruction

“Do not suggest sneakers for wedding-related 
events”

“Sneakers” not in response if 
“wedding” in example

Qualitative 
Criteria

“Include a statement piece in your suggestion” Check if there is a statement 
piece (need LLM or human)



SPADE ♠: System for Prompt Analysis and Delta-Based Evaluation

1. Identify phrases in the prompt that 
indicate potential assertions 

2. Write assertions as Python 
functions that operate on 
formatted prompt & response pairs 

3. Reduce redundancies & 
inaccuracies in the assertions
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Write Assertions as Python Functions

• Given the concepts found in a prompt 
template, e.g., “quantity instruction” and “>= 3 
items,” GPT-4 generates Python functions 

• Functions can call ask_llm 

• Functions can batch concepts 

• Depending on how many prompt versions exist, 
10s or even 100s of assertions get generated! 🤯 

• We could only generate assertions for the last 
prompt version, but we may lose important 
criteria, and/or the LLM may not recall all 
criteria if the prompt is very long
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SPADE ♠: System for Prompt Analysis and Delta-Based Evaluation

1. Identify phrases in the prompt that 
indicate potential assertions 

2. Write assertions as Python functions 
that operate on formatted prompt & 
response pairs 

3. Reduce redundancies & 
inaccuracies in the assertions
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Assertion Examples

• ask_llm(“Is this outfit appropriate for the weather?”) 

• ask_llm(“Is this outfit appropriate for the temperature and season?”) 

• ask_llm(“Does this outfit make sense given the possible weather?”) 

def check conciseness(prompt, response): 

return len(response.split(“ “)) < 5 
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Eliminate Redundant Assertions

• We want the fewest # of assertions where our 
chosen assertions: 

• (Recall constraint) Cover all the actual bad 
examples 

• (Accuracy constraint) Don’t fail too many 
examples that the developer believes to be 
good, i.e., “false failure rate” 

• Since this is pre-deployment, we can’t assume 
access to a representative set of examples 

• Recall constraint -> Cover all the concepts found 
by SPADE. Need to do concept deduplication/
entity resolution to get the set of all concepts.
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def check_professional(prompt: str, 
response: str) -> bool:
    """
    This function checks if the response 
includes professional attire for work-
related formal events.
    """
    return ask_llm(f”Is the outfit 
suggestion {response} professional enough 
for the event described in {prompt}?”)

Might not be 100% 
accurate!



Eliminate Redundant Assertions

• Concept deduplication — entity resolution problem 

• Each assertion is associated with 1+ concepts (e.g., 
check_num_items checks ability to parse into a list 
& number of items) 

• Each concept is associated with a category, prompt 
template version, & origin (phrase in prompt) 

• Blocking rules: 

• Concepts with same category from our 
taxonomy 

• Concepts with same origin 

• Concepts from different template versions
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Concept 1

Concept 2

Concept 3

Assertion 1

Assertion 2

Origin: first sentence

Origin: last sentence

Category: Inclusion Instructions

Prompt Template Version 1

Prompt Template Version 2

Category: Quantity



Eliminate Redundant Assertions

• Each assertion has 1+ concepts, 1+ categories, and a version # 

• Estimate accuracies with a sample of synthetically-generated and human-
labeled ~50 examples 

• Set cover problem:  

• Let f_i = assertion i 

• Let ffr_i = % examples that are good and f_i fails, i.e., false failure rate 

• Minimize sum ffr_i * z_i, where z_i indicates whether f_i is chosen, subject to 
coverage constraint?
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ffr_{i and j} <= 
ffr_i + ffr_j



Eliminate Redundant Assertions

• Set cover problem:  

• Let f_i = assertion i 

• Let ffr_i = % examples that are good and f_i fails, i.e., false failure rate 

• Minimize sum ffr_i * z_i, where z_i indicates whether f_i is chosen, subject to coverage 
constraint? 

• Not fully optimal, because ffr of the conjunction of chosen assertions F’ can be less than 
the sum of individual ffr’s for f_i in F’ 

• max (ffr_i, ffr_j) <= ffr_{i and j} <= sum (ffr_i, ffr_j) 

• Can implement a branch & bound solution. Branch step = including or excluding a 
function f_i, bound when ffr > threshold, # functions > size of best set so far, or feasibility
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Summary and Looking Ahead

• Deploying custom LLM pipelines requires some assertions 

• It’s hard to come up with assertions automatically, without much data or 
insight into what developers care about 

• To align with what developers care about, we analyze edits to prompts 

• To create assertions, we use LLMs + implement a pipeline to remove redundant 
assertions 

• Need to run experiments
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