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Abstract— In the last two decades, interactive visualization and analysis have become a central tool in data-driven decision making.
Concurrently to the contributions in data visualization, research in data management has produced technology that directly benefits
interactive analysis. Here, we contribute a systematic review of 30 years of work in this adjacent field, and highlight techniques
and principles we believe to be underappreciated in visualization work. We structure our review along two axes. First, we use task
taxonomies from the visualization literature to structure the space of interactions in usual systems. Second, we created a categorization
of data management work that strikes a balance between specificity and generality. Concretely, we contribute a characterization of 131
research papers along these two axes. We find that five notions in data management venues fit interactive visualization systems well:
materialized views, approximate query processing, user modeling and query prediction, multi-query optimization, lineage techniques,
and indexing techniques. In addition, we find a preponderance of work in materialized views and approximate query processing, most
targeting a limited subset of the interaction tasks in the taxonomy we used. This suggests natural avenues of future research both in
visualization and data management. Our categorization both changes how we visualization researchers design and build our systems,
and highlights where future work is necessary.

1 INTRODUCTION

When building systems for interactive data analysis and visualization,
the most important question we keep in mind is: “will this system actu-
ally help its user in what they are seeking to achieve?” The mismatch
between system-as-actually-built and system-as-user-wish-it-were is a
common way for things to wrong, and is now generally regarded as one
of the main threats to validity in visualization design [123]. This shift
from “how can we build visualization systems?” to “what visualization
systems ought we build?” is one of the most important perspective
changes in visualization research.

One area of particular interest is the shift towards interactive visu-
alization of big data. The success our community has experienced
over the years means we now want to build visualization systems for
increasingly large and more complex datasets. However, a fundamen-
tal assumption made in many of our visualization techniques is that
the input data will always be small enough to process and manage
ourselves, enabling us to sidestep questions regarding scalability and
computational efficiency. For sufficiently large datasets, we can no
longer afford to ignore computational constraints. As system builders
and researchers, we seek technologies that enable us to respect our
users and their particular constraints, while increasing the range of
dataset size and complexity that our systems can handle.

We are left, then, with a conflict between computational con-
straints from scale-centric concerns and design constraints from
user-centric concerns, which requires combining lessons from the
visualization and data management communities. Through a structured
review methodology, we argue that tools appropriate for the user-centric
concerns which also gracefully handle scale-centric concerns are not all
at the same level of maturity. Some limited areas are ready to support
the development of actual systems, some areas still require the devel-
opment of methods and technical solutions, and some areas require
foundational work. To support these claims, we contribute:

• a structured literature search and review of the last three
decades of publications in top academic venues in visualization,
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databases and data management, specifically targeted towards
interactive visualization of large datasets,

• a two-axis categorization of the found articles: task tax-
onomies designed for interactive visualization versus different
optimization strategies,

• a discussion of observed gaps in the literature and other patterns
we have found, and

• a reflection on limitations of our methodology, and where fu-
ture work is needed

Our primary audience is graduate students, researchers, and practi-
tioners in visualization. Specifically, we target those who have struggled
with the implementation of interactive analysis or visualization systems
when data scale becomes a problem. This issue typically manifests
as application performance issues, but correctness problems can come
into play as well. In response, the technologies we review here are
positioned to make a positive impact on the ways future visualization
system builders design their solutions.

1.1 Three ways to develop data visualization programs
Consider the following scenarios, which capture how interactive visual-
ization programs are designed and implemented. There are two axes of
interest: how data is accessed, and how visualizations are built from
the data.

Data access: connect to a DBMS directly The standard way
to access data from a source of interest is to have the visualization
program connect directly to a traditional database management system
(DBMS) storing the data, using a language like SQL. This provides
maximum flexibility for the application and DBMS: they do not depend
on one another’s computational characteristics at all. Unfortunately,
in this case the DBMS lacks any application context that could be
used to further improve system performance, such as visual encodings,
interactive filtering, and so on. As we will show later in this review,
modern data management literature has started to provide solutions for
some of the problems in interactive visualization, but most DBMSs
lack these necessary features to support visualization programmers. As
a result, flexibility currently limits scalability.

Visualization creation: use a modern visualization DSL After
the problem of data access has been addressed, visualization program-
mers need to design the actual visualization aspects of their applica-
tions. When designing for flexibility, programmers often implement
their desired interactive data visualization functionality using modern
domain-specific languages (DSLs) for visualization, such as Vega or
VisQL [153, 154, 165]. These DSLs capture both visual encodings and
interactive behavior in a machine-readable form, which would ideally



be translated into a form that communicates to the DBMS the computa-
tional and perceptual features of the visualization, so interactions and
data access can be optimized in tandem. Unfortunately, this vision is
unrealistic today. Libraries like Vega are flexible and powerful, but do
not currently provide the infrastructure necessary to communicate in-
formation to the DBMS with the goal of optimizing the performance of
the downstream queries, though we expect this situation to improve in
the next decade or so. Once again, flexibility seems to limit scalability.

Roll up your sleeves, write from scratch If programmers to-
day want to design effective, interactive visualizations that scale, the
current situation requires them to know about recent techniques in the
data management research literature. We believe this problem makes
reviews such as ours uniquely important: data scale has caught up with
the field and our high-level infrastructure is not well-suited for big
data contexts. In addition, a long-term solution to this problem will
require interactive visualization design to happen within the bounds of
computational constraints. We anticipate that designers of novel visual
encodings and interaction modalities with a good working knowledge
data management techniques will have a unique advantage, since their
novel encodings would ideally be optimized by (future) DBMSs.

2 RELATED WORK
We are not the first to observe the necessity of connecting data manage-
ment to interactive visualization research. A number of other surveys
have sought to bridge the gap between the two fields.

We highlight here two classes of reviews: those written from the
perspective of visualization research, and those written from the per-
spective of data management research. In the former, Bach et al.’s
review of temporal data visualizations [7] organizes visualization work
along data access requirements; Godfrey et al. [62] provide a general
overview of work handling scale concerns in data visualization; and
Zhang et al. [190] provide a review of commercially-available systems
for big data visual analytics (as of 2012).

In data management, we note the following surveys: Chaudhuri
and Dayal [31] provide a classic overview of data cubes and related
work; Halevy [66] surveys papers on views: the more general idea
of answering a query using previously computed tables derived from
the original database; Mami and Bellahsene provide a survey on the
problem of which views to compute [110]; Li and Li [100] survey
approximate query processing, the idea of allowing a small amount of
error into the result in order to provide answers more efficiently; Kwon
et al. provide a visualization-focused survey in the same area [96].

Of these surveys, we note that only Kwon et al. focus on connecting
one specific database technique — sampling — to interactive visualiza-
tion opportunities. Our work is similar in that respect. In contrast to the
relatively narrow focus in sampling, we offer a broader survey of both
visualization and data management work. In addition, we categorize
the surveyed work by applicability to particular interaction tasks as
well as by the relevant optimization area in data management research.
This categorization is, to the best of our knowledge, unique to our work.
We describe our methodology in the next section.

3 THE SURVEY AND ITS METHODOLOGY
Our survey includes a total of 130 references selected from a set of
278 research articles from top data management, visualization, and
human-computer interaction conferences: SIGMOD, VLDB, ICDE,
IEEE VIS, Eurovis, UIST, and ACM CHI. We obtained the larger set by
identifying relevant keywords in notable papers, and then performing
searches on IEEE Xplore, ACM Digital Library, and Google Scholar.
Our goal in this review is not to be comprehensive. Rather, we keep to a
relatively narrow search to provide a view into the relative development
of subareas, giving context and structure for future visualization stu-
dents, researchers, and practitioners. For interested readers, we provide
the full bibliography as supplementary material.

3.1 Paper Selection
We selected papers for review as follows:

1. We reviewed the proceedings of prominent visualization and HCI
venues (VIS, CHI, UIST, EuroVis, etc.) from 2000 to 2020. We

selected papers that used existing database techniques with a
focus on improving performance.

2. We clustered the collected visualization and HCI papers by the
database optimization techniques they applied (e.g., materialized
views, user modeling, etc.).

3. We then reviewed the database literature for influential papers
related to the topic clusters derived from Step 2.

(a) Database papers that were directly referenced by the papers
from Step 2 were included for review.

(b) We then conducted a formal literature search of the last 20
years of data management research by inspecting the titles
and abstracts of every paper in this time frame that was
published at ACM SIGMOD, VLDB, and ICDE, arguably
the top three data management conferences in the field;
any relevant and influential papers were included in our
analysis.

(c) Finally, we performed online searches for each topic (e.g.,
via google scholar), and included any influential papers
missing from our current list (i.e., papers referenced by
many other papers in the database community).

4. As a verification step, we asked colleagues from the database
community to review our list of topics and corresponding papers;
we included any papers considered relevant to the given topics
but missing from our review list, (e.g., adding the “interactive”
keyword to our database search based on peer feedback).

Our paper selection process yielded 72 visualization and HCI papers,
186 database papers, and 20 other surveys for review. We prioritize
relatively recent full and short papers. However, a small number of
workshop papers are included, as well as papers published before 2000.
We did so when they appeared as a top result in our online searches.

Keywords Our search keywords for the visualization literature are
slanted towards databases and systems, emphasizing data management
operations and optimizations: “aggregat”, “sampl”, “quer”, “cub”,
“large”, “scal”, “multi”, and “big”. Conversely, our keywords for the
database literature focused on visualization and HCI-oriented topics:
“interfac”, “interact”, “visual”, “explor”, and “real-time”.

Topics Omitted from Our Review We focus on techniques to
improve the performance of online analytical processing (or OLAP) use
cases at interactive speeds. Given the strong emphasis in the database
literature on managing structured (i.e., tabular) data in OLAP use cases,
we focus on optimizations for tabular data in this work. As a result,
certain topics are omitted from our analysis, particularly techniques for
interacting with large graphs, image collections, and text corpora (i.e.,
unstructured and semi-structured datasets), and methods for visualizing
massive simulations. These areas are treated as special cases within
databases, and often require additional data management techniques
that are outside the scope of this work. We also adopt the common
convention in the (database) OLAP literature to focus on techniques that
address scale-up in the number of data points, and not necessarily the
dimensionality of the data. As such, dimensionality-focused techniques
are outside of the scope of this work. Finally, we point out that there is
an extensive body of work in scientific visualization to support big data
use cases in the physical and biological sciences (e.g., volume and flow
rendering, and visualizing output from massive simulations). These use
cases generally do not match the properties of OLAP, and so are out of
scope for this survey.

3.2 Coding Methodology
For each paper selected for review, we labeled the papers by both: 1)
database optimization(s) applied and 2) interaction type(s) supported.
Note that a single paper can have multiple optimization and interaction
labels, and thus may appear multiple times in our analysis. We apply
the database optimization labels derived from our paper clustering. We
use an a priori coding strategy for the interaction type labels using the
types specified in the Brehmer and Munzner multi-level typology [20].
We detail our interaction coding strategy here, and describe our derived
optimization clusters in Section 4.



3.2.1 Choosing an Appropriate Interaction Taxonomy
To reiterate, a primary threat to the validity of visualization and analysis
systems is that of solving the wrong problem [123]. As a result, a
significant amount of visualization methodology research seeks to
characterize more precisely what it is that users want to do when
they use visualization systems (we assume, as the literature does, that
this characterization is possible in principle). We tailor our survey
to visualization researchers and practitioners, and directly relate our
surveyed data management research to methodological work in data
visualization. Concretely, we place the surveyed data management work
inside the taxonomies that characterize analytical tasks in visualization.

To identify an appropriate taxonomy, we searched the visualization
literature for “taxonom”, and identified three candidate taxonomies that
apply in our setting: those of Amar, Eagan and Stasko [5], Brehmer
and Munzner [20], and Heer and Shneiderman [70]. After simplify-
ing their respective structures to a list of analytic tasks, we aligned
tasks across the three taxonomies, arriving at the following task cate-
gorization: encode, select, navigate, arrange, change, filter,
aggregate, annotate, derive, record, import. Note that here,
encode refers to interactions that users perform to create new visual-
izations, and not the rendering process itself.

In our view, Brehmer and Munzner’s typology best captures distinc-
tions in how data management technology can be applied in interactive
analysis systems, balancing abstraction in how tasks are carried out, and
concreteness in which tasks users actually seek to achieve. We focus on
the “how” level of their typology, because it provides a rich structure for
classifying interactions by behavior. The “how” level of the typology
emphasizes methods for “encoding data”, “manipulating existing
elements in a visualization” and “introducing new elements” [20].
These classes have clear translations to data processing operations.
For example in the manipulate class, the filter, aggregate and
derive methods directly translate to specific SQL clauses (WHERE,
GROUP BY and SELECT, respectively).

3.2.2 Coding by DBMS Optimization Techniques
We adopted a descriptive coding process to cluster papers by DBMS
optimization techniques [150]. After the initial set of papers were
identified from Step 2 of our paper selection process, two authors
independently designed descriptive codes to categorize the core topic(s)
for the observed optimization techniques. The coders then discussed
any disagreements, and iteratively refined the codes to form a final
codebook. As an example, while materialized-viewswas identified
in the first iteration, index was identified on subsequent discussions.

3.2.3 Coding Papers
In this work, we are specifically interested in how database optimiza-
tions relate to specific interaction types. When determining if a par-
ticular database paper supports a given interaction type, we look to
our list of reviewed visualization and HCI papers for guidance: if a
visualization or HCI project uses an optimization technique to support
a particular interaction, then we know that it is possible to apply the
corresponding interaction type label to papers that discuss this opti-
mization strategy. For example, not all papers on data cubes develop
visualization interfaces to test the techniques, but data cubes papers in
the visualization community (e.g., imMens and Nanocubes [104, 107])
are primarily designed to support navigation and filter interac-
tions, thus other data cubes papers that shared similarities with imMens
and Nanocubes were also assigned these interaction labels.

Not all database implementations provide support for all interactions.
For example, naive sampling strategies may not actually support sam-
pling over queries involving filters or complex transformations, which
are required to support the corresponding filter and derive interac-
tion types. Thus the interaction labels applied to our selected papers
often represent the maximal set of interaction types supported by the
relevant database optimization techniques. For example, the Pangloss
system [118] uses approximate query processing (or AQP) optimiza-
tion techniques to support aggregate, derive, filter, navigate,
and record interactions over large datasets. However, we find that
most proposed database optimization strategies for AQP are designed
primarily to only support aggregate and filter interactions.

4 AN OVERVIEW OF DATABASE OPTIMIZATION TECHNIQUES
Our analysis led to a clustering of papers by the database optimization
strategies used to improve system performance. In this section, we
describe each database optimization type produced in our clustering,
explain the significance of this optimization, and provide examples of
how it is or may be applied in visualization contexts.

4.1 Materialized Views
What is it In a classic database view, the underlying query is

always (re-)executed every time a client (e.g., application, database
user) accesses the view, and the result is discarded after the client is
done accessing the view. A materialized view is simply a view where
rather than discarding the result, the DBMS stores it as (e.g.) a new
table in the database. Materialized views shine in their re-use: the
more frequently a view is accessed, the greater performance benefits
are provided by materializing it. On the other hand, if the underlying
data changes often, the materialized view queries generally have to be
updated to reflect the new results.

Data cubes are a special case of materialized views to better support
Online Analytical Processing (or OLAP) workloads, where aggregate
queries are quite common. Data cubes represent the materialization of
multiple aggregation queries. Given a sorted list of grouping attributes
G and separate attributes from which to compute aggregate statistics
A, data cubes materialize the results of all queries representing the
calculation of all aggregates a ∈ A, after grouping the data using some
prefix of the grouping attributes G′ where |G′| ≤ |G|. Each grouping
attribute g ∈ G′ represents a dimension of the cube.

Why this matters for Vis As seen in previous visualization
work [8, 104, 107], materialized views can provide two clear perfor-
mance benefits: 1) little to no computation needs to be performed
at runtime, ensuring that interactions can remain interactive, even on
large datasets; and 2) when using aggressive aggregation strategies, the
aggregate results can be compressed into significantly smaller space
compared to the raw data, making the data more manageable for end
users. However, materialization is not a panacea and depends on the
computation being performed. In particular, the size of materialized re-
sults tends to be a limiting factor, as they can quickly become unwieldy
if left unchecked [104, 119, 129]. For example, it is unlikely that the
aggregate results for all possible interactions should be pre-computed,
as they could produce results that are many times the size of the original
dataset (e.g., as found by Moritz et al. and Battle [15, 119]). Fortu-
nately, this limitation has been considered extensively in the database
literature, providing us with an opportunity to leverage materialized
results more effectively for visualization use cases [15, 37].

Example System Two prototypical examples are imMens by Liu
and Heer, and Nanocubes by Lins et al. [104, 107]. These systems pre-
compute data cube-like structures in advance, before a user performs
any interactions. These structures enable fast indexing into the data to
identify which tuples are relevant to the current viewport (e.g., after a
pan, zoom, or selection interaction) and retrieval of the pre-aggregated
results relevant to the viewport with low latency.

4.2 Approximate Query Processing
What is it When working with large datasets, oftentimes users can

quickly gain a sense of important trends and salient features with just a
small randomized sample of the data. This key idea has lead to a deep
interest in the database community in supporting “approximate query
processing” (or AQP), which specializes in executing database queries
using randomized samples of the underlying data to give users fast (and
in some cases, near-immediate) feedback. However by definition, ap-
proximate results have inherent error, which these approximate systems
aim to calculate, bound, and ultimately minimize.

Approximate query results are primarily computed using statistical
samples, for example using progressive algorithms, where the results
are initially computed using a small sample of the data, then tuples are
continuously added to this sample and the results are recomputed to
improve the results over time. The approach of updating results in real
time, and allowing users to stop when they have “seen enough” [143]
is generally referred to as online analytics in databases and progressive



materialized-views aqp mqo user-modeling provenance index
encode [48] [48] [90] [109] [180] [18] [80] [185] [189]
select [13] [34] [47] [83] [87] [95] [112] [116]

[139] [168] [169] [170] [177]
[34] [87] [99] [138] [47] [61] [76] [83]

[91] [116] [140]
[149] [158] [170]
[195]

[33] [51] [79] [127]
[193]

[13] [139] [16] [26] [34] [53] [79]
[112] [139] [157] [168]
[169] [193]

navigate [8] [22] [35] [37] [39] [44] [52] [58] [64]
[68] [74] [82] [88] [89] [95] [101] [102]
[103] [104] [105] [107] [112] [113] [114]
[115] [122] [124] [129] [132] [134] [136]
[145] [148] [147] [151] [152] [162] [164]
[166] [168] [169] [170] [174]

[38] [39] [41] [44] [50] [71]
[72] [84] [88] [89] [93] [118]
[132] [136] [145] [151] [161]
[173] [186]

[48] [136] [170] [8] [43] [46] [48] [78]
[79] [88] [89] [105]
[151] [152] [161] [164]
[28] [193]

[167] [16] [22] [44] [45] [50]
[53] [59] [75] [79] [80]
[93] [101] [112] [129]
[134] [157] [168] [169]
[173] [185] [186] [189]
[193]

arrange [39] [159] [170] [172] [39] [92] [144] [159] [172] [60] [170]
change [48] [48] [109] [18] [80] [185] [189]
filter [1] [2] [3] [6] [8] [13] [19] [22] [27] [29]

[30] [35] [36] [37] [39] [44] [47] [52] [56]
[57] [58] [64] [68] [74] [82] [83] [87] [88]
[89] [95] [101] [103] [104] [105] [107] [112]
[114] [115] [116] [117] [119] [124] [125]
[129] [134] [135] [136] [139] [145] [147]
[148] [151] [152] [162] [164] [166] [168]
[169] [170] [172] [174] [177]

[1] [2] [3] [4] [6] [30] [29]
[36] [39] [41] [44] [50] [54]
[56] [57] [71] [72] [84] [85]
[86] [87] [88] [89] [93] [99]
[98] [119] [118] [126] [135]
[136] [138] [145] [151] [172]
[173] [186] [188] [191]

[47] [56] [61]
[60] [76] [83] [91]
[116] [136] [140]
[149] [158] [170]
[171] [195]

[8] [33] [43] [46] [51]
[78] [79] [88] [89] [105]
[127] [151] [152] [164]
[28] [193]

[13] [139] [167] [16] [22] [26] [36] [44]
[45] [50] [53] [56] [59]
[75] [79] [80] [93] [101]
[112] [117] [125] [129]
[134] [139] [157] [168]
[169] [173] [185] [186]
[189] [193]

aggregate [1] [2] [3] [6] [8] [19] [27] [29] [30] [34]
[35] [36] [37] [39] [44] [47] [52] [56] [57]
[58] [64] [68] [74] [82] [83] [88] [89] [95]
[101] [102] [103] [104] [105] [107] [112]
[113] [114] [115] [116] [117] [119] [122]
[124] [129] [134] [135] [136] [139] [145]
[147] [148] [151] [152] [159] [162] [164]
[166] [170] [172] [174] [175] [177] [187]

[2] [1] [3] [4] [6] [25] [29]
[30] [34] [36] [39] [44] [50]
[54] [56] [57] [71] [72] [85]
[86] [88] [89] [93] [92] [99]
[98] [119] [118] [126] [130]
[135] [136] [138] [145] [151]
[159] [172] [173] [176] [186]
[187] [188]

[25] [47] [48] [56]
[60] [76] [83] [91]
[116] [136] [149]
[170] [171] [175]

[8] [48] [88] [89] [90]
[105] [109] [151] [152]
[164]

[18] [139] [34] [36] [44] [50] [53]
[56] [80] [93] [101]
[112] [117] [129] [134]
[139] [173] [185] [186]
[189]

annotate
derive [2] [30] [44] [47] [56] [83] [116] [134]

[170] [175]
[2] [25] [30] [44] [56] [99]
[118] [126]

[25] [47] [48]
[56] [60] [83] [91]
[116] [149] [170]
[175]

[48] [44] [56] [80] [134]
[185] [189]

record [118]
import [80] [134] [185] [189]

Fig. 1. Our literature search resulted in 130 total references coded by implementation strategy and interaction type, and is summarized in this
table. Each subarea, represented by a cell, is colored based on the “maturity level” of the specific intersection of the research areas: fewer than
10 references, 10 to 19 references, and 20 or more references. As additional material, we provide a separate BibTeX file containing all of these
references and the coding metadata. We have kept the row “annotate” unpopulated since we could not identify any references in our search which
would fit the context of this review. We provide more discussion about our results in Section 5.

analytics in visualization. Data samples can also be pre-computed
offline, for example by creating a stratified 5% sample of the original
data, grouped by the most popular attributes. While statistical sampling
is the most popular approach, there are alternatives, such as early
termination: strategically stopping a scan of a table before it is finished
can be an effective way to achieve approximate results [24, 94].

Why this matters for Vis Admittedly, several existing projects in
visualization already do a great job of motivating (albeit naive) approxi-
mate and progressive data computation strategies (e.g., Pangloss [118]).
However, basic sampling only goes so far [3], and quickly loses its
effectiveness at massive (i.e., terabyte and petabyte) scales, which
are the every-day reality of many high-impact companies, such as
Google, Facebook, and Microsoft. Considering more sophisticated and
statistically-aware sampling strategies from the database community
can help us to extend the reach of visualization work. In addition, the
additional information provided by a concrete visualization scenario
might inform some of the decisions necessary for achieving AQP sys-
tems (such as the choice of stratification in systems like BlinkDB [3]).

Example System Pangloss, developed by Moritz et al. [118],
enables users to “explore very large datasets by grouping, aggregating,
and filtering,” where these data processing operations are computed
and rendered iteratively over time. Users can also direct Pangloss to
continue processing certain visualizations in the background, so that
users can revisit an approximate result later on to verify that the final
results match previous observations.

4.3 User Modeling & Query Prediction
What is it Exploratory visual analysis has been shown to incorpo-

rate consistent [184], predictable (e.g., [21, 65]) data analysis tasks
and interaction sub-sequences. Specifically, one can derive models
of user behavior that can predict user personality characteristics [21],
future interactions or data fetches [8, 28, 46, 88], or even whether the
user is close to extracting insights or completing a task [9, 65]. These
models can be derived using rule-based methods [28, 46, 65] or auto-
matically using machine learning techniques [8, 21].

In general, the database community has been interested in how a
series of data requests can be detected, anticipated and managed more
efficiently over the course of one or more analysis sessions. Query
prediction is but one part of this user modeling process, where the
system anticipates future requests. Another issue is handling requests
once they have been received, where it is possible that not all requests

can be processed in time for the user to see them. As such, we can
apply user modeling techniques to prioritize existing requests to further
reduce system latency.

Why this matters for Vis. Though user modeling has been ex-
plored in the visualization community (e.g., [21, 63, 65]), these models
are not straightforward to incorporate into existing systems. For ex-
ample, many models are derived by hand, making it difficult to map
the results to new use cases or improved system designs. More can
be done to make these models more concrete, for example, machine
learning techniques have shown promise in automating the modeling
process (e.g., [8, 21]). With encoded models comes opportunities to
automate system performance optimizations, such as automated data
pre-fetching and speculative or predictive data processing [8, 88].

Inconsistent data collection and sharing methodologies impacts
our ability as a community to power data-driven user modeling sys-
tems [11]. A community effort to collect and share data through a
consistent process could empower the community to develop more
robust algorithms and theoretical models for user visualization and in-
teraction behavior, as well as enable broader evaluation of our research
output and impact (e.g., through meta-analyses [81, 97]).

Example System Battle et al. developed the ForeCache and
Sculpin systems to support interactive browsing of massive array data
via pans and zooms [8, 10]. The main contribution of the work by
Battle et al. is a multi-level prediction engine that anticipates future
pans and zooms, and pre-fetches the corresponding data ahead of users
as they explore. By pre-fetching data in advance, the system appears to
respond faster to the user’s interactions, thereby improving the user’s
data browsing experience.

4.4 Multi-Query Optimization (MQO) & Shared Work
What is it When multiple queries will be executed in parallel (i.e.,

together in a batch), most database query optimizers will select an opti-
mized execution plan for each query independently. However, in scenar-
ios where either the same operations (i.e., shared work [61, 140, 195])
or same data (i.e., shared intermediate results [83, 149, 158]) appear
in multiple queries in the batch, the query optimizer could develop a
smarter global execution plan that exploits these overlaps. The con-
cept of global optimization across multiple parallel queries is formally
referred to as “Multiple-query optimization” or “multi-query optimiza-
tion”. Multi-query optimization is known to be a problem of expo-
nential complexity, which worsens considerably as the number and



complexity of queries to optimize increases [149]. To address this
problem, most solutions focus on aggressively pruning the search space
of possible plans, for example by optimizing queries independently and
then merging the resulting plans; or by optimizing the query plans one at
a time, seeing how each subsequent plan can reuse existing plans [149].
Others have also considered probabilistic methods [83]. All methods
utilize tree or DAG structures to represent query plans [61, 83] and
often also utilize aggressive tree pruning techniques to further reduce
the search space for shared plans.

Why this matters for Vis Multi-query optimization could be par-
ticularly interesting, given the proliferation of batch-based visualiza-
tion techniques like visualization recommendation [40, 77, 171, 181]).
When enqueueing tens or hundreds of recommended visualizations in
response to a single user interaction, it may be advantageous to con-
sider how the corresponding data processing operations (e.g., DBMS
queries [165]) could be merged for more efficient processing over
massive datasets. In addition, we note that multiple-coordinated-view
(MCV) systems are natural targets for MQO: almost by definition, each
view can be modeled as a separate query over the same database.

Example System Consider the SeeDB system developed by Var-
tak et al., which aims to recommend new visualizations for users to
explore [171]. SeeDB’s recommendation strategy is to identify inter-
esting statistical differences between subsets of data that may be of
interest to users, such as differences in capital gains between married
and unmarried individuals. To produce a recommended visualization,
SeeDB must execute the corresponding query in the DBMS. To enable
fast processing of multiple visualization recommendations simultane-
ously, SeeDB employs a number of optimization heuristics that are
related multi-query optimization, such as merging queries with similar
group-by or aggregation predicates.

4.5 Lineage/Provenance Techniques
What is it Provenance (or “lineage”) refers to the recording of

metadata to capture how an analysis task or operation was executed,
and is actually a well-established topic of research in both the visu-
alization [69, 142] and database communities [55, 73, 160]. Existing
provenance recording techniques typically produce structured metadata,
such as interaction logs or system execution logs, that users can later vi-
sualize or query to understand how certain analysis results were derived.
Visualization provenance generally aims to illustrate a user’s analytic
reasoning process (or analytic provenance), whereas database prove-
nance aims to record the operations and/or results from executing a data
processing system (or even full workflows, known as “workflow prove-
nance”). Database research in provenance aims to support continuous
and efficient provenance recording, such that the collected metadata
does not take up significant space compared to the original data, and the
metadata itself can be queried quickly by the user. Database research
generally employs either logical provenance (i.e., recording operations)
or data provenance (i.e., recording results of operations) techniques.

Why this matters for Vis The database literature on provenance
provides two opportunities that are particularly useful for the visualiza-
tion community. First, one can build efficient data structures directly
from provenance data to improve the performance of visualization inter-
actions. For example, Psallidas and Wu show how provenance data can
be exploited to speed up dynamic queries, specifically crossfilter [139].
More broadly, provenance data is an essential component to capturing
the behavior of complex, opaque systems, where database systems
are one type of opaque system, but there are others such as machine
learning (especially deep learning) models [146]. These complex sys-
tems are often compute- (and data-) intensive, requiring the attention to
efficiency that database research provides when recording provenance.

4.6 Indexing Techniques
What is it These techniques utilize existing data structures and/or

indexing structures to enable fast and efficient processing of often spa-
tial and/or temporal data. Data cubes, and a variant called data tiles,
are examples of data structures used to facilitate fast exploration of
spatiotemporal data [8, 104, 107]. R-trees are an example of a mul-
tidimensional database index used to facilitate exploration of spatial

data [168, 169]. However other index types are also used to facilitate
fast data lookups during interactive data exploration, such as bitmap
indexes [26]. These data structures are generally pre-computed offline
for a given dataset and visualization design, before exploratory visual
analysis takes place, i.e., before the user ever interacts with the rendered
visualization. As such, these techniques also overlap with materialized
views. When done carefully, indexes can also be incrementally updated
in real time based on data access patterns (e.g., data cracking [79]),
which combines indexing and user modeling techniques. We discuss
optimization intersections in detail in the next section.

Why this matters for Vis Since they are similar to materialized
views, pre-computed data structures enable essentially constant-time
lookups for the corresponding database queries. When a user’s inter-
actions are translated directly to queries, then these interactions also
confer the same performance benefits. Furthermore, existing storage
systems like TileDB can provide data tile specification and storage with
very little overhead [131].

Though not constant-time, indexes allow for very fast retrieval of
stored data as well, generally with logarithmic complexity. Further-
more, many commercial database products provide native spatial index
support. For example, PostgreSQL provides native support for R-trees,
which are utilized by the Kyrix visual exploration system to provide
150ms response times, on average [168, 169].

Example System Consider the Kyrix system developed by Tao
et al. [168, 169]. Given a specification for a pan-zoom visualization,
Kyrix pre-computes the locations and bounding boxes surrounding each
mark within the visualization. Using this information, Kyrix constructs
a series of spatial index structures (currently R-trees) for each zoom
level, including semantic zoom levels. These R-trees are used to quickly
identify and fetch which marks, and thus which tuples, are currently
displayed in the viewport after each user interaction.

5 ANALYSIS OF CODES
We have organized our literature review by the high level interac-
tion types studied by the visualization community (as summarized
by Brehmer and Munzner), and the high-level classes of database opti-
mizations identified through our coding process (see Section 4). Each
cell in the table represents an application of a database optimization
type to a specific interaction type. Note that multiple optimizations
are often used together, and interfaces often include more than one
type of interaction. As such, specific papers may appear in multiple
cells. We analyze the relationships between different optimizations and
interactions based on observations across the cells in our taxonomy
table, and report on our findings in the remainder of this section.

5.1 “Universal” Optimization Techniques
Some optimization techniques are popular and applicable to many
interaction types. Materialized views seem to improve the performance
of most interaction types, and appear to be a very popular research
topic. The fundamental idea behind materialized views is to save the
results of previous queries, anticipating that these or similar queries
will appear again in the near future. The widespread use and success of
this optimization strategy for interactive visual analysis suggests there
are predictable aspects to how people interact with large datasets, and
we can think of view materialization as a simple form of user modeling
for query prediction. One might also ask why identical or overlapping
queries occur in the analysis process, and what role interaction design
might play in creating this repetition. If users naturally revisit the
similar visualizations (and thus similar queries) regardless of interaction
design, then materialized views offer a clear advantage in terms of
performance. Still, given the large body of existing literature on the
creation and management of materialized views, this area may bear
relatively fewer fruits in terms of new optimization opportunities.

Approximate query processing is also popular in the visualization
and database communities, providing performance benefits for most
interaction types. AQP methods are appealing in their wide applica-
bility to most analytical queries: often a user’s query can be answered
almost as well with a small sample as with the full dataset. Furthermore,
sampling techniques are already available in many commercial DBMSs,



making it straightforward to apply sampling-based optimizations within
visualization systems that can connect to a DBMS. However, existing
sampling methods may still incur intolerably high error in their results,
or prove too restrictive in a general-purpose visualization system [32].
As a simple concrete example, we believe that giving the DBMS infor-
mation about how the data will be encoded might be a valuable way to
improve stratification strategies like that in BlinkDB [3].

5.2 Insights From Gaps
We offer a subjective categorization of the relative maturity of work in
each subarea, based on how many references appear in each cell. We
use the following color code: fewer than 10 references, 10 to 19 refer-
ences, and 20 or more references. These categories seem to translate to:
(1) observations of relevant use cases to establish tangible performance
problems, (2) algorithms formalizing nascent optimization techniques
to address established performance problems, and (3) systems gener-
alizing beyond existing algorithms to provide accessible solutions for
non-experts. Although coarse and necessarily limited, it provides a
useful frame of reference for discussion.

5.2.1 Interaction Support Gaps
Certain interaction types are well-studied: filter, aggregate,
select. These interactions match typical OLAP scenarios, and thus
would naturally be widely supported in our survey. The next most
studied interactions are navigate and derive, followed by arrange,
and then finally encode, change, annotate, record, and import.

Five interaction types have empty or nearly empty rows in our table:
annotate, encode, change, import and record. Though these in-
teractions are useful to support in visualization systems, they appear to
be irrelevant to current research efforts in terms of performance impact.

For some interactions, this outcome makes sense. annotate and
record have limited throughput, because they produce one record per
interaction. For example, annotate requires the user to annotate or
augment a given visualization. Similarly, record requires a user to
manually save visualizations. Since users tend to only interact with
visual analysis tools at a rate of once every few seconds [14], data
generated in this way is relatively small, and often easy to manage
outside of a DBMS.

Visualization recommendation systems seem to target the intersec-
tion of user modeling optimizations and encode interactions, as they
aim to anticipate the user’s analysis goals, and propose relevant vi-
sualization designs to further these goals. For example, the SeeDB
system [171] and CompassQL language (used in the Voyager sys-
tem [181]) aim to optimize the analysis process through visualization
recommendations. However, few visualization recommendation tech-
niques currently exist, and existing systems also have their limitations
(e.g., SeeDB only displays bar charts). We note that this area has seen
recent growth (e.g., Draco, VizML, and Data2Vis [42, 77, 120]), but
not in terms of optimization.

We were surprised by the dearth of systems that optimize for encode
and change. Most papers we reviewed seem to hardcode the visualiza-
tions that users can explore, or only provide a small number of fixed
visualization templates from which to construct new visualizations (e.g.,
only allow users to explore bar charts). Although these interaction types
are known to enhance users’ data exploration performance [165, 181],
more research is needed to support these interactions in large datasets,
or at least to evaluate the efficacy of existing optimizations.

We found that all of the papers coded with import describe
production-level systems simultaneously supporting fast data ingest
and real-time analytics on a massive (e.g., petabyte) scale. Surpris-
ingly, most other papers seem to assume that data ingestion has already
happened. Investigating the intersection between data ingest and
interactive visual analytics may also be a promising avenue for fu-
ture work, given the clear industry interest observed.

5.2.2 Optimization Application Gaps
We find few applicable examples for three optimization methods: prove-
nance, user modeling, and MQO techniques.

We see that relatively few database optimization techniques reuse
past query results, pointing to an opportunity for work on these

topics for visualization use cases. However, specific optimiza-
tions target results re-use in particular ways, such as those used in
Tableau [170, 177, 178]. This scarcity could come from a lack of
concrete use cases for studying how results reuse, and MQO more
broadly, could be applied in visualization scenarios. Recent calls for
developing visualization performance benchmarks may prove useful in
this case [11, 49, 182], to provide both communities with testbeds for
studying under-explored optimization strategies.

The lack of concrete use cases could also be due in part to the com-
putational complexity of baseline MQO approaches, and how difficult
it is to make the baseline faster [156]. Here, we believe that restrict-
ing MQO to visualization use cases could make MQO tractable.
Rather than supporting all of SQL, or even all of OLAP, we only have
to concern ourselves with the range of possible queries supported by
the visualization interface. Visualization contexts are generally limited.
Visualization tools can also provide significantly more feedback about
the projected utility of specific visualization designs, given the user’s
recent interaction history, or even the user’s personality and prefer-
ences [128, 192]. Furthermore, with the popularity of visualization
recommendation features (see Section 5.2.1), optimizing the computa-
tion of user requests and (possibly many) system predictions in parallel
becomes attractive.

Surprisingly, we find few projects that leverage data provenance and
analytic provenance for optimization purposes. Some papers leverage
provenance for user modeling [21] and are in some ways similar to
results reuse [139], but overall this area appears to be under-explored.
Both the visualization [142] and database communities [55, 73, 160]
have studied provenance topics extensively, but primarily from the
perspective of illustrating this data for users (analytic provenance in
visualization) or collecting it efficiently as users manipulate the data
(data provenance in databases). Further, user modeling often requires
access to rich provenance data from which to train the models, leading
to analogous gaps in user modeling research. We believe that this
intersection represents a valuable opportunity for collaboration between
the two communities to develop optimization techniques that merge
both analytic and data provenance.

We believe part of the issue may also stem from how in practice,
only a few systems collect and manage large amounts of provenance
data from multiple users over a long period of time, a notable example
being VisTrails [23]. Furthermore, it is still unclear what the benefits
really are (performance or otherwise) to storing a significant amount
of provenance data over one or more user sessions. Presumably, if a
user has to choose between storing data that will help them do their
job, or storing provenance data of unknown value, then the user will
likely choose to keep the former and delete the latter. As such, there
is a value proposition that needs to be articulated and demonstrated to
users to gain traction in this research space.

5.3 Optimization Intersections
Our coding strategy also uncovers interesting results at the intersections
of optimization methods. Here we highlight existing research thrusts,
and several promising future directions based on these intersections.

For example, papers that tend to have both materialized views and
approximate query processing codes generally employ a pre-computed
sampling strategy, where samples are constructed offline, before the
user performs any data exploration [3]. These results suggest that new
intersections could be developed by combining our codes, which would
represent cross-cutting methods that span multiple columns or multiple
rows. For example, query steering methods [43, 179] require user input
to direct how approximate query processing strategies are applied, but
these techniques could be combined with user modeling to predict or
recommend future user interactions.

We find that user modeling is frequently combined with other opti-
mization methods (e.g., aggregation [8, 88, 105, 164] and materialized
views [152]), and is generally used to direct how these other opti-
mizations are applied. Technically, user models are often trained on
user logs, so basic provenance recording is utilized. However, to our
knowledge, user modeling has not yet been combined with provenance-
focused optimizations, nor indexing-based or multi-query optimization



methods. These missing combinations in our taxonomy could prove to
be interesting research directions for the future.

Given that indexes are traditionally used to retrieve records, and
not necessarily to derive new ones, we find that indexing-based
optimizations are often paired with other optimization methods,
such as materialized views [44, 101, 112, 139, 168, 169] and aggre-
gation [22, 101, 112]. To further reduce system response times, in-
dexing is also frequently paired with approximate query process-
ing [34, 39, 44, 47]. In general, it seems that indexing can be combined
with new optimization techniques to enhance their effectiveness.

Furthermore, it would be interesting to explore whether existing opti-
mization methods can be applied more effectively to under-supported in-
teraction types. For example, how might multi-query optimization tech-
niques be designed to better support arrange, encode, and change
interactions? As another example, could user modeling methods be
extended to anticipate user analysis intent, and thus recommend future
annotations (annotate) and queries (derive)?

5.4 Inspiration from Adjacent Projects
There are several papers not included directly in our literature review
which were relevant in terms of motivating future research directions
for optimization work. In motivating their TPFlow system, Liu et al.
point out that users need “sufficient guidance” for where to search
within a dataset for insights, such as patterns or anomalies [106]. Re-
ducing the size of the data and making specific interactions fast are on
their own insufficient to ensure that the user ultimately finds what they
need from the data. The user still has to apply the right interactions
in the right places to extract meaningful results. Similarly, Ming et
al. argue that the limited screen real estate for displaying data dis-
tributions and insights should also be considered in the optimization
process [67]. Thus, it might prove effective to incorporate aware-
ness of the user’s analysis goals and environmental constraints in
the process. For example, DBMS optimizations have started to shift
towards aggregating and sampling in a way that preserves salient fea-
tures rather than simply making the data smaller [86, 143]. Recent
work in visualization recommendation follows this approach, as does
user modeling in general. Still, these ideas could be applied to all of
the optimization categories we observed in our review.

6 DISCUSSION
In this section, we contextualize and interpret our findings through
our own experiences working at this research intersection, and suggest
major takeaways and promising research directions for the database,
visualization, and human computer interaction communities.

6.1 Distributed and Parallel Computing
Relying on parallel and distributed processing for performance reasons
is a classic technique in databases and elsewhere. Although we noted
a number of papers in our literature search which use such strategies
(we report them in our bibliography under the parallel tag), we do
not include a specific column for “distributed and parallel process-
ing” in our taxonomy. We do this for the main reason that distributed
and parallel techniques exist that complement each of the technique
columns themselves (i.e. parallel and distributed index building, view
materialization, etc). Nevertheless, we wish to highlight one specific
approach in this area, that of studying the effects of asynchrony. It is
well known that asynchronous distribution offers larger performance
benefits at the cost of losing some behavioral guarantees. There is
nascent work (notably by Bendre et al. and Wu et al. [17, 183]) in ex-
amining the consequences of asynchronous distribution for interactive
analysis applications, but much more work is needed in the area.

6.2 Systems: Advancing Optimization
We identified six optimization types that are currently used to im-
prove visualization system performance: materialized views, approxi-
mate query processing (AQP), user modeling, multi-query optimization
(MQO), provenance, and indexing. Certain techniques, such as ma-
terialized views and AQP, appear to be very popular and universally
applicable to visualization system design. Others like user modeling,
MQO and provenance techniques seem to be under-explored.

Though many prototypes and techniques have been developed to
apply these optimization strategies, there appears to be no consensus
or standardized APIs to move them from the algorithms to the systems
stage of maturity, for use by a broader audience. Though some DBMSs
do provide limited access to some of this functionality, DBMS opti-
mizations are far from standardized across product offerings [133].
Therefore, the classic advice of “just use a database” falls flat in this
respect. Ongoing work in “embeddable” DBMSs (e.g., SQLite, Pandas
and DuckDB [141]) have made it easier to use DBMSs directly within
live programming environments, however, users are still at the mercy
of what optimizations are available directly in the DBMS itself.

To make popular optimization techniques truly foundational and
universally applicable, we argue that they should be shared as a standard
set of packages or modular components that can easily be adopted by
other communities. Basically, optimizations should be treated as first-
class components within visualization systems, and implemented using
a uniform structure so that current and future systems can be optimized
(and evaluated) in a systematic way outside of the DBMS. Recent work
in AQP follows this approach (e.g., VerdictDB [133]), which may
provide a template for disseminating other techniques.

6.3 Algorithms: Enhancing Interaction
Though most interaction types in the literature seem to be supported by
these optimization types, a few stand out. On the one hand, optimiza-
tion techniques may be overkill for some underrepresented interaction
types, such as annotate and record. On the other hand, some interac-
tions are very demanding from a performance perspective, and yet are
still under-supported, such as encode and change interactions. The
encode and change interactions in particular appear to be particularly
difficult to support at scale. Here, we suggest how the visualization
community can engage other areas of computer science by clarify-
ing the core research problems for interaction, and generally moving
interaction research towards the algorithms stage of development.

One classic methodology in databases is to define a problem in terms
of a formal (and often mathematical) theory, then design new systems
and optimizations based on this formal structure. The influence of the
relational model is an obvious example of the benefits of this approach,
which has been developed into countless relational DBMSs, including
the widely used PostgreSQL and SQL Server systems [137, 163]. The
nature of visualization and human-computer interaction research makes
it difficult to represent interactions with real people as formal mathe-
matical theories. However, it is difficult for us to articulate the structure
and significance of new visualization problems to other research com-
munities without clear terminology or formalisms to share. These ideas
are not necessarily new, and to some extent are captured in existing
frameworks for visualization research [20, 123]. Our goal is to high-
light how a more formal approach to visualization research problems
not only benefits our community, but also clarifies our contributions
and potential collaboration opportunities with other areas.

There are clear examples that illustrate the benefits of bridging this
gap for the visualization community. For example, the formal theory
behind visualization encodings has provided a useful platform for
database optimization strategies, in particular automated visualization
recommendations, which are a form of user modeling. In another
example, systems like Polaris and DEVise proposed formal mappings
from visualization designs to database queries [108, 165], enabling
them to automatically offload data processing to a DBMS, as well as
clarify how existing database optimization strategies (e.g., indexing,
data cubes) could be exploited to improve visualization performance.

However, more work remains to be done. For example, though we
have clear formalisms for static visualization designs, we still lack
precise formalisms for interactions, making it difficult to clarify the
differences and challenges in supporting specific interactions. New
visualization languages that allow interaction specification, such as
Vega and Vega-Lite [153, 155], may be useful starting points in this
direction. Visualization research is often—for good reasons—presented
in terms of specific applications, but a dearth of algorithms and pseu-
docode makes it hard to develop general, reusable approaches for the
fundamental problems that the research aims to solve.



6.4 Observations: Addressing the Gaps
Though several optimization techniques are ready to move to the sys-
tems stage of development, we still see a surprising number of tech-
niques that require more data collection in the observations stage.
Specifically, more research is needed to clarify how and where under-
explored optimization strategies are applicable to visualization contexts.
In this work, we highlight specific gaps in the literature, such as MQO,
provenance, and user modeling. For example, it could be possible that
provenance optimization techniques are widely applicable to all inter-
action types, however we currently have insufficient empirical results
to evaluate these theories. We encourage the database community to
revisit these optimization areas in future work, but from the perspective
of supporting interactive and visual analytics. Closer collaboration
between the two communities could prove beneficial particularly for
investigating provenance optimizations, since there exists a large body
of work both in visualization and databases to build upon.

However in the case of MQO, we may lack publicly available use-
cases or a large body of work to support new directions. A valuable
first step may be to develop a benchmark or evaluation framework that
showcases the challenges that MQO aims to address. Cross-community
benchmarks could serve as explicit contracts between communities, a
vetting of key use-cases and performance metrics to shape the devel-
opment of future interactive analytics systems. Recent work makes
inroads in this direction [12], but broader standards remain necessary.

6.5 Recommendations
Based on our findings and observations, we make three high-level
recommendations for future research at this intersection:

R1: Make “universal” optimization strategies standard packages or
modular components that can easily be imported into other systems.

R2: Develop more precise formalisms and definitions for fundamental
components of visualization research (e.g., interactions); and incorpo-
rate algorithms, frameworks, and pseudocode as core contributions to
new visualization research projects.

R3: Develop an ecosystem of cross-community benchmarks to better
capture the characteristics of interactive analytics, and foster collabo-
ration around under-explored optimization areas.

6.6 Limitations & Future Work
With this paper, we seek to highlight the breadth and depth of data man-
agement techniques that have already been applied in interactive analy-
sis scenarios, in hopes of encouraging the visualization (and database)
community to more consistently support and adopt these methods. By
focusing on what has happened in the past, however, we necessarily fail
to capture many current areas that might become similarly important in
the future. We have already discussed the issue of asynchronous com-
putation. Other areas we have not covered include hardware-sensitive
systems design [121, 194], and compilation techniques. We hope that
through more cross-area collaborations between the visualization and
database communities, these new topics can be more readily adapted
for interactive analysis scenarios.

Our task analysis is similarly backwards-looking in a visualization
context. Some interactions of interest in databases are currently not well
represented in visualization literature. For example, search interactions
matter for information retrieval. Recent DB work attempts to formalize
the relationship between search and DB systems [111], but because
this style of work was not reflected in our chosen taxonomies, our
analysis fails to account for it.

Finally, we also note that system performance alone does not nec-
essarily improve the overall interactive analysis experience, as human
performance must also be considered. For example, the user’s ability
to effectively interact with a system (independent of throughput and
latency constraints) can still drive overall performance. In addition to
our work, we believe there is also room for a contemporary character-
ization of database techniques to make visual human-data interfaces
work more effectively, rather than merely faster.
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