
Distributed and Interactive Cube Exploration
Niranjan Kamat #1, Prasanth Jayachandran #2, Karthik Tunga #3, Arnab Nandi #4

Computer Science and Engineering Department, The Ohio State University
2015 Neil Avenue, Columbus, OH 43210, USA

{kamatn1,jayachan2,tunga3,arnab4}@cse.osu.edu

Abstract—Interactive ad-hoc analytics over large datasets has
become an increasingly popular use case. We detail the challenges
encountered when building a distributed system that allows the
interactive exploration of a data cube. We introduce DICE,
a distributed system that uses a novel session-oriented model
for data cube exploration, designed to provide the user with
interactive sub-second latencies for specified accuracy levels.
A novel framework is provided that combines three concepts:
faceted exploration of data cubes, speculative execution of queries
and query execution over subsets of data. We discuss design
considerations, implementation details and optimizations of our
system. Experiments demonstrate that DICE provides a sub-
second interactive cube exploration experience at the billion-tuple
scale that is at least 33% faster than current approaches.

I. INTRODUCTION

Large-scale analytics has found a growing number of use
cases in a variety of disciplines, from business to the sciences.
With the rapid rise in data, and the reliance on data-driven
insights for decision making, planning and analysis, the role
of analytics over massive datasets has become a critical one.

With the proliferation of large-scale data infrastructure, it
is not uncommon for end-users to expect direct fine-grained
control over large amounts of data. The availability of both
dedicated and dynamically provisioned distributed computa-
tional resources allows analyses that were typically handled
by database administrators to be performed by the end-users
of the analyses themselves. Further, there is an increasing
demand in real-time or near-real-time analytics, where all
analysis is performed on in-situ data, such as constantly-
updating logs that are being appended to in a batched manner.
As detailed in the following paragraphs, despite the availability
of performant, distributed and scalable infrastructure, there
exist several challenges to large-scale analytics.

In addition to the typical use cases of reporting, where
predetermined query templates are run over batches of new
incoming data, and mining, where data is analyzed to discover
interesting patterns of information, there has been a sharp
rise in the demand for ad-hoc analytics, exposed to the user
over interfaces for business intelligence, interactive dashboards
and advanced domain-specific data-driven applications. These
challenges are exacerbated in the scope of ad-hoc analysis over
a CUBE representation [19] of the data. Such a representation
is useful for the purpose of exploratory data analysis, since
successive investigatory questions can be answered in the form
of drilldown or rollup queries.

Data cube exploration is often expected to be interactive –
queries need to be responded to within a small latency bound.

Studies in human-computer interaction [36], [47] establish
guidelines and demonstrate the functional and economic value
of rapid response times, heavily motivating a sub-1000 ms (i.e.
sub-second) threshold for the database to respond to the user.
For our system, we empirically observed that latencies of up to
1000 ms were perceived as fluid, and it took around 5000 ms
for the user to view and react to the query results.

A. Common Approaches

Intuitively, the simplest approach to ensuring fast, interac-
tive cube exploration is to materialize the entire data cube
such that each query to the cube is simply a lookup from a
main memory cache. While such a setup will perform within
the latency bounds we are subject to, we are constrained by
scale: a fully materialized cube can be several multiples of
the original dataset, which typically is larger than available
memory. Further, such a strategy does not work in the case of
ad-hoc (e.g. computed) dimensions or if the user is inspecting
a new measure. Thus, an often-used approach is to execute
the query over an offline computed sample of the data [2],
[10], [32], [54]. However, this approach cannot accommodate
changes in the underlying data. The techniques described in
our paper are complementary to such an approach and can
easily be adapted, if needed, to accommodate offline sampling.
Online aggregation approaches have also been studied [24],
but require a significant overhaul of the entire query processing
infrastructure. Further related work is provided in Section V.

This paper introduces DICE, a system that proposes a
session-oriented approach to data cube exploration that caters
to the challenges observed. In contrast to existing OLAP
systems, our system is designed keeping in mind the user’s
flow, surfacing approximate results within interactive latencies.

Contributions:
• We introduce DICE, a distributed system that allows explo-
ration of 1-billion-tuple data cubes at sub-second levels.
•We provide a principled cost-based framework that combines
two complementary techniques: speculative query execution
and online data sampling to achieve interactive latencies for
cube exploration in a distributed framework.
• To bound the space of possible speculative queries, we
propose a faceted cube exploration model that considers
successive queries as part of a query session.
• We share insights into the design and implementation of our
system based on real-world query logs, user studies and
detailed performance evaluations.

978-1-4799-2555-1/14/$31.00 © 2014 IEEE ICDE Conference 2014472Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on August 28,2023 at 23:31:45 UTC from IEEE Xplore. Restrictions apply.

facet query

result

More'Dimensions'

analytics
frontends

facet
traversals

UI actions
Sampling Rate 	

	

slave1	

DB	

slave3	

DB	

slaveN	

DB	

Result Cache

Master

Network

slave2	

DB	

Workers

Query	 	
Federa1on	

(result = measure & std dev)

Sample	
Aggrega1on	

Specula1ve	 Query	
Execu1on	

Fig. 1. DICE Approach: Allow tunable sampling rates on low-latency frontends, with UI actions translated to facet traversal queries (Section II-A) over
the data cube. Queries are executed by the master over distributed slaves (Section II-B). In the DICE approach (Section III), the master manages session state,
query speculation and result aggregation, while the slaves manage execution and caching. For each query, the master distributes the query to each slave, which
may have some results speculatively executed and cached. Results from each slave are then aggregated, error bounds are calculated, and returned to the user.

B. Motivating Example

One typical use of interactive cube exploration is in the
management of cloud infrastructure. For each setup, a handful
of operations personnel manage tens of thousands of nodes,
each with multiple virtual machines. Each instance produces
a plethora of events, which are logged to track performance,
detect failures and investigate systems issues. Each event item
can be understood as a tuple with several fields, and each
analytics task can be considered as a projection on a cube
over the entire dataset. Event log data is copied over from
all instances into a distributed data store, and is typically
queried within fixed time ranges. Queries are ad-hoc, and due
to the critical nature of the task, a system that allows for fast,
interactive aggregations is highly desirable. Thus, an example
query in our use case can be given by:

SELECT rack, AVG(iops)

FROM events

WHERE datacenter = "EU" AND hour = 6

GROUP BY rack;

Such a query can be used to identify problematic I/O rates
across racks which could cause failures in a datacenter over
time. We expect such queries to be either written by the
operations personnel directly, or be generated automatically
by applications that provide visualizations and an easy-to-use
querying layer. An important insight is that such a process
is not about aiding exploration such that user intervention is
not required, but about helping the user analyze data faster by
reducing the time it takes to interact with the data.

Our use case is driven primarily by the need for inter-
active data cube exploration. First, querying is ad-hoc and
exploratory. Given the variety of possible questions to be
answered, it is difficult to implement such a system over tra-
ditional reporting platforms, streaming queries, incrementally
materialized views or query templates. Second, the data is
distributed due to its size and nature of generation: events from
each node in the datacenter are copied over to a set of nodes
dedicated to this ad-hoc analysis to be used by one or few

people. Another consequence of the size of the data is that it
is impractical to construct a fully materialized cube to perform
analysis. Third, user interaction, either through the application
interface or through direct querying should not impede the
user in performing their exploration task. Thus, the interaction
needs to be fluid, requiring the underlying queries to return
quickly, enforcing the latency bounds discussed above. Given
the sampling rate specified by the user, it is desirable that the
results for the specified number of queries be returned at the
earliest. Lastly, queries are seldom one-off, and almost always
occur as part of a larger session of related queries. In light
of this characterization, our problem thus becomes: Given a
relation that is stored across multiple nodes, and the queries
issued by the user so far, ensure that each query in the session
is responded to at the earliest, at the user specified sampling
rate. We will formally define this problem in Section II, along
with the overall data model.

II. DATA MODEL AND PRELIMINARIES

Having motivated the problem setting of a distributed,
interactive, cube exploration system, we now discuss prelim-
inaries for each of these three contexts. We begin with cube
exploration, where we define a faceted exploration model to
facilitate complete yet efficient exploration of the data cube.
As we will discuss in the following section, faceted explo-
ration bounds the space of successive queries, thereby making
speculative query execution feasible. Second, we discuss the
execution of faceted queries in a distributed setting, where
data is distributed across nodes as table shards. Finally, given
the constraints of interactivity, we explain our techniques for
approximate querying over sampled data, provide a framework
to execute faceted queries over multiple nodes, and draw
from concepts of stratified sampling and post-stratification to
aggregate results and estimate error bounds.

A. Faceted Exploration of Data Cubes

In the context of cube exploration, the definitions of cube,
region, and group are as per the original data cube paper [19].

473Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on August 28,2023 at 23:31:45 UTC from IEEE Xplore. Restrictions apply.

A region denotes a node in the cube lattice and a group denotes
tuples with the same values of attributes for that region. For ex-
ample, one of the groups in the region {datacenter,month}
is {EU,January} for the cube derived from the motivating
example. We continue with our motivating example, using
the following schema: Database table events catalogs all the
system events across the cluster and has three dimensions, two
of which are hierarchical:
location[zone:datacenter:rack], time[month:week:hour], iops

Challenges in Exploration: As a user exploring a data cube,
the number of possible parts of the cube to explore (i.e. cube
groups) is very large, and thus, exploration can be unwieldy. To
this end, we introduce the faceted model of cube exploration,
which simplifies cube exploration into a set of facet traversals,
as described below. As we will see in the following section,
the faceted model drastically reduces the space of possible
cube exploration and simplifies speculative query execution,
which is essential to the DICE architecture.

a,b	

b	 a	

*	

sibling

pivot

parent

child

Fig. 2. Faceted Cube Explo-
ration Traversals

We introduce the term facet as
the basic state of exploration of
a data cube, drawing from the
use of category counts in the
exploratory search paradigm of
faceted search [53]. Empirically,
most visualizations such as map
views and bar charts found in vi-
sual analytics tools can be con-
structed from aggregations along
a single dimension. Facets are meant to be perused in an
interactive fashion – a user is expected to fluidly explore the
entire data cube by successively perusing multiple facets.

Intuitively, a user explores a cube by inspecting a facet of
a particular region in the data cube – a histogram view of a
subset of groups from one region, along a specific dimension.
The user then explores the cube by traversing from that facet
to another facet. This successive facet can be a parent facet in
the case of a rollup, a child facet in the case of a drilldown,
a sibling facet in the case of change of a dimension value
in the group and a pivot facet in the case of a change in
the inspected dimension. Thus, the user is effectively moving
around the cube lattice to either a parent region, or a child
region or remaining in the same region using sibling and pivot
traversals to look at the data differently. A session comprises
of multiple traversals. The formal definitions are as follows.

Facet: For a region r in cube C, a facet f is a set of groups
g ∈ r(d1...n) such that the group labels differ on exactly one
dimension di, i.e. ∀ga, gb ∈ f, di(ga) 6= di(gb) ∧ dj(ga) =
dj(gb) where i 6= j and di is the grouping dimension, and the
remaining dimensions are the bound dimensions. In its SQL
representation, a facet in a region contains a GROUP BY on the
grouping dimension and a conjunction of WHERE clauses on
the bound dimensions of that region. A facet can be referred
to using the notation f(dg,

−−−→
db : vb) where dg ∪

−→
db denotes

the dimensions in the corresponding region, dg denotes the

grouping dimension,
−−−→
db : vb denotes a vector representing the

bound dimensions and their corresponding values. Thus, the
measure COUNT on the dimension iops along with the facet
f(zone,month : m1, week : w1) gives a histogram of I/O
failure counts grouped by zones for a specific week and month.

Facet Session: A facet session ~F is an ordered list of facets
f1...n that a user visits to explore the data cube. The transition
from one facet to another is known as a traversal.

We now define four traversals, Parent, Child, Sibling and Pivot,
inspired by similar traversals over data cube, each allowing us
to move from one facet to another. We define them in terms
of the destination facet, as follows.

Parent Facet: A parent facet is defined as any facet obtained
by generalizing any of the bound dimensions. Thus, a facet
fp(dpg,

−−−−−→
dpb : vpb) is a parent to the facet f(dg,

−−−→
db : vb) if

dpg = dg and
−−−−−→
dpb : vpb represents a parent group of

−−−→
db : vb

in the cube lattice. The parent facet f(zone,month : m1)
generalizes the dimension time from the prior example.

Child Facet: A child facet is defined as any facet obtained
by specializing any of the bound dimensions. Thus, a facet
fc(dcg,

−−−−−→
dcb : vcb) is a child to the facet f(dg,

−−−→
db : vb) if dcg =

dg and
−−−−−→
dcb : vcb represents a child group of

−−−→
db : vb in the cube

lattice. Thus, the child facet f(zone,month : m1, week :
w1, hour : h1) specializes the dimension time.

Sibling Facet: A sibling facet is defined as any facet ob-
tained by changing the value for exactly one of the bound
dimensions. Thus, a facet fs(dsg,

−−−−−→
dsb : vsb) is a sibling to the

facet f(dg,
−−−→
db : vb) if dsg = dg ,

−→
dsb =

−→
db and −→vsb and −→vb

differ by exactly one value. The sibling facet f(zone,month :
m1, week : w2) thus changes the value of week.

Pivot Facet: A pivot facet is defined as any facet obtained by
switching the grouping dimension with a bound dimension.
Thus, a facet f(dg,

−−−→
db : vb) can be pivoted to the facet

fv(dvg,
−−−−−→
dvb : vvb) if dvg ∈

−→
db ∧ dg ∈

−→
dvb and −→vb and −→vvb have

all but one bound dimension and value in common. The facet
f(week, zone : z1,month : m1) pivots on zone z1 from the
facet example, and is therefore its pivot facet.

EXPLORABILITY OF THE CUBE: It is clear that in our model,
the user is able to fully explore the data cube, i.e. all cube
groups can be explored using facets, and it is possible to reach
any facet from any other facet. First, a group g =

−−→
d : v, can

be obtained from |
−→
d | facets, f(dg,

−−−→
db : vb) : dg ∈

−→
d ∧
−→
db =−→

d − dg . Second, any two facets in a region can be reached
from another by a series of sibling and pivot traversals: sibling
traversals to change bound values, and pivot traversals to
switch between bound and grouped dimensions. Parent and
child traversals allow us to reach the corresponding parent
and child regions in the cube lattice. Thus, the four traversals
enable full exploration of the cube lattice. Note that we do
not require users to follow only the listed traversals – faceted
traversals simply reduce the space of successive queries for
speculation (Section III-A).

474Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on August 28,2023 at 23:31:45 UTC from IEEE Xplore. Restrictions apply.

EFFECTIVENESS OF FACETED MODEL: The four traversals
mentioned above are both intuitive and sufficient to explore
the entire data cube. The parent, child and pivot traversals are
inspired by rollup, drilldown and pivot operations respectively.
It is always possible to add more traversal types, especially
by mining a user’s query history for common “patterns”
of analysis, e.g. keeping the bound dimensions the same
and changing the group by dimension. Such extensions are
easily pluggable into our system, but not required – the four
traversals described above are intuitive and powerful enough to
traverse the cube. We quantify the applicability of our model
on real-world query logs and measure user satisfaction
using a user study, described in Section IV-C.

B. Distributed Execution

The interactive nature of our use case necessitates the
approximation of results by executing queries over a subset
of the data. We use sharded tables to achieve distributed
and sampled execution of queries. A sharded table contains
a subset of the rows of a SQL table and the concatenation
of all shards across nodes is equivalent to the entire dataset.
Each node may contain multiple shards. A sharded table is the
atomic unit of data in our system: updates are performed at
the granularity of the shard level, and each session makes the
assumption that the list of shards and the shards themselves
do not change.

C. Querying over Table Shards

A sample of the data is constructed online by choosing
random table shards during run-time, allowing for random
sampling. We use standard sampling concepts of stratified
sampling [13] and post-stratification [13] for estimating the
error bounds. Details on our use of sampling methods are
provided in the appendix.

Given the preliminaries and definitions, in the naive case,
the problem of ad-hoc cube exploration using the facet ex-
ploration model is simply that of successively executing each
query received at a given sampling rate. We formulate our
problem as the following:

For a facet session ~F , where each ad-hoc facet query fi
is expected to execute at a certain sampling rate, and the
expected time between the termination of one facet query and
the start of the next ad-hoc facet query (i.e., the time taken to
view the results of the prior query) is τV , return fi as quickly
as possible to the end-user, preferably within the interactive
threshold τI .

Accuracy Gain Heuristic: In order to schedule speculative
queries at different sampling rates, we need to know the reduc-
tion in sampling error at different sampling rates. However, it
cannot be known before actually sampling the data. Therefore,
we construct a heuristic based on the consistency property of
Maximum Likelihood Estimation (MLE), ||θ∗ − θ|| = O(1√

n
)

where θ∗ is the current estimate, θ is the true value and n is
the current sampling rate, which informs us that the difference
between our estimate and the true value will be inversely

proportional to the square root of the current sampling rate.
Therefore, we can estimate the future gain in accuracy based
on the sampling rate. Thus, the estimated gain in the accuracy
due to a unit sampling rate increase can be given as

AccuracyGain(Rcurr) = c ∗ (
1√
Rcurr

− 1√
Rcurr + 1

) (1)

where Rcurr is the current sampling rate and c is the constant
from the proportionality heuristic.

With more time permissible, we issue the same query on
multiple tables on multiple nodes progressively giving us
a smaller standard error for the estimators. Our goal then
during speculative execution of the queries is to increase the
likelihood that the next user query would be cached at a higher
sampling rate allowing us to retrieve the results at the desired
sampling rate at the earliest. We cast this to fit the DICE
framework in the following section.

III. THE DICE SYSTEM

A. Speculating Queries in a Session
A crucial insight to ad-hoc querying is that queries oc-

cur in sessions. Thus, it is prudent to think of improving
query performance holistically at the session level. A session
comprises several ad-hoc queries, each of which requires low-
latency responses. The result for each query is inspected by
the user for a small amount of time, after which the next
query is issued. We consider this as a hidden opportunity –
the database is simply waiting on the user to issue the next
query. In light of this, our solution is to utilize this waiting
time to speculate, execute and cache the most likely followup
queries at the highest quality possible. While the concept of
speculative execution is an intuitive one, there are several
challenges to implementing it over a distributed, approximate
querying environment – especially in the context of data cube
exploration. The challenges comprise a host of interdependent
problems: What are the most likely followup queries? What is
the strategy to employ to execute and cache likely queries? In
a sampling approach, what is the highest sampling rate to run
a speculative query at, given interactive constraints? Finally,
is there a singular framework to combine these problems into
a cohesive, unified system?

Given these challenges, we present the DICE system that
solves the problem by using three complementary strategies.
First, it performs speculative query execution, by caching
results of likely followup queries, allowing for reduced laten-
cies for ad-hoc query sessions. The enumeration of the likely
followup queries is made possible by the faceted model of
data cube exploration described in Section II. Second, DICE
employs a novel architecture of query execution over a dis-
tributed database, executing queries piecemeal over individual
table shards and then assembling them in a post-processing
step. This novel architecture in turn allows for bounded-time
execution of queries ensuring interactive latencies. Third, it
employs a cost-based model for the prioritized execution of
speculative queries such that likely queries are executed at
higher sampling rates.

475Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on August 28,2023 at 23:31:45 UTC from IEEE Xplore. Restrictions apply.

B. System Architecture

The architecture of our system employs a hierarchical
master-slave approach, such that all queries are issued to the
master, and responded to by the master. In line with the
setting described in Section II-B, each slave manages multiple
table shards. Each shard is atomic and read-only, and is
implemented as a table in a commodity relational database.
The catalog of shards across all slave nodes is maintained
at the master. For a single exploration session, the catalog is
used to ensure that the list of shards addressed is constant. The
slaves maintain an in-memory LRU cache for the results. In a
fast-changing database, table shards can be atomically added
and deleted from the slaves, and the master’s catalog can be
updated, allowing for querying over rapidly changing data.

C. Query Flow

The high-level query flow of DICE is as follows: each
ad-hoc query is rewritten and federated to the slave nodes,
where it is executed. The results are returned, aggregated and
presented to the user, along with the accuracy of the query.
Upon success, a set of speculative queries is executed till
the next user query is received, with the goal of increasing
the likelihood of caching as many of the future queries as
possible. When the successive ad-hoc query is issued, it is
again rewritten and federated, with the hope that its results
are cached at the slaves at a high sampling rate, thus reducing
the latency of the overall ad-hoc query.

User Query: At startup, the master makes sure that all
the slaves are running and ready to accept queries. On
receiving an ad-hoc query, the query is rewritten into multiple
queries, one per required random table shard and passed to
each slave. Since data is horizontally distributed across all
slave nodes, the query itself is identical, with the exception
of id of the table shard addressed. On completion of an
ad-hoc query (or if the results of the query were already
in the cache), each slave returns the results back to the
master, where the results are aggregated, and error calculation
performed, and this information presented to the user.

Speculative Queries: Upon completion of the ad-hoc
query, the master immediately schedules a list of speculative
queries that can be issued by the user. While the space of
possible queries is unbounded, we restrict our speculations
using faceted exploration framework; thus allowing the list
of possible queries to be enumerable. Speculated queries are
then ranked (as discussed in the following subsection), and
distributed amongst the slaves in a round-robin fashion. Each
slave issues, in an increasing order of rank, a predefined
number of concurrent queries to its database and populates
the results in its cache (speculative query results are not sent
to the master). Upon receiving the next user query, the slave
kills all currently running speculative queries.

Successive User Query: When the next ad-hoc query
arrives, it is again rewritten and federated to the slaves. If

the exact query or a unified query (refer to Section III-F) is
cached, the result of the ad-hoc query is materialized from
the cached result. If it is not cached it is then executed on
the database. The caching of speculated queries drastically
impacts ad-hoc query latency and allows for a fluid and
interactive data cube exploration experience.

D. Prioritizing Speculative Queries

As is clear from the query flow and the faceted model,
each ad-hoc query can yield significantly large number of
speculative queries. Given the bounded time available for exe-
cution, it is typically not possible to execute all the speculative
queries. Thus, it is necessary to prioritize speculative query
execution such that it maximizes the likelihood of results for
the successive query being returned from the cache. This can
in turn be done by maximizing the overall gain in accuracy, as
discussed in Section II-C. The selection of the maximal subset
can be modeled as a linear integer programming problem as
follows:

MAXIMIZE:
∑

q∈Q Prob(q) ·AccuracyGain(SR) · xq
SUBJECT TO:

∑
q∈Q Time(q) · xq <= totalSpecT ime

WHERE: xq ∈ {0, 1}.

Here, Prob(q) gives the probability of a query q, which
should be obtained from the query logs, Q is the set of all
speculative queries at all sampling rates, AccuracyGain(SR)
is the estimated gain in sampling accuracy which depends
on the sampling rate SR of q as described in Section II-C,
Time(q) is the estimated running time and totalSpecT ime
is the expected total speculative time.

Considering the input parameters, it is not possible to solve
the above optimization problem in sub-second latency thus
preventing us from returning results within those latencies. We
expect the majority of the query execution cost to be typically
due to an in-memory table scan over identically sized data
if the table shards are pre-loaded in the memory. It is not
possible to load the entire dataset into memory but definitely
a significant fraction which in our experiments was up to 20%
such that the error bars for most of the groups were small.
This lets us assume unit execution time for each query over
a shard. In that case, it is clear that choosing the query that
yields the maximum of the product of the probability of a
query and the estimated accuracy gain for the corresponding
sampling rate is the best decision. Therefore, the solution to the
problem of choosing of the best queries that yield the highest
overall accuracy gain turns into a greedy selection problem,
the algorithm to which we provide in the following section.

Greedy Approach: The greedy cost-based approach priori-
tizes the execution of the most likely queries that provide
the highest overall accuracy gains. We represent the score
of a query q at the sampling rate of SR as Prob(q) ·
AccuracyGain(SR).

476Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on August 28,2023 at 23:31:45 UTC from IEEE Xplore. Restrictions apply.

In the case of multi-query optimizations such as unifica-
tion (described in Section III-F), where multiple queries are
grouped together into a unified query Q = q1..n, the score
can be represented as

∑
q∈Q Prob(q) ·AccuracyGain(q).

Queries are run greedily on the worker nodes in descending
order of the score. Since worker nodes are capable of bounded-
time execution and each query runs in a time lesser than the
view latency threshold due to the small size of the table shard,
this approach proves to be a viable strategy and successfully
provides for sub-second latencies, as observed in Section IV.

In the case of sibling traversals for ordinal dimensions,
a user is more likely to choose the changed bound dimen-
sion value closer to the current value. We use a heuristic
that the distribution of the probability of the value that
the changing dimension in the where predicate takes can
be given as P (newV al) = O(1

||newV al−oldV al||2). Let the
set of speculative sibling queries and their probabilities be
SQ = {SQ1...n} and P = {P1...n} respectively. We re-
distribute the sum of these probabilities between queries in
SQ as P (x) = 1

c∗(x−oldV al)2 where c is the normalization
constant given by

∑
y∈Υ

1
(y−oldV al)2 where Υ is the domain of

the changing dimension. Using query logs, user behavior can
be modeled using the above distribution as the prior.

E. The DICE Algorithm

We are now able to illustrate both the overall model of the
system (Algorithm 1) and the DICE algorithm (Algorithm 2).

EXPLORE(User u)
1 //CF : Current Facet
2 CF = null
3 while True
4 do
5 Query q ← TRAVERSE(u,CF)
6 Results r ← EXEC(q)
7 QSpec ← ENUMERATE-SPEC(q)
8 PSpec ← DICE-PLAN-DETERMINE(QSpec, CF)
9 for each node n, queries Q in PSpec

10 do //parallel loop till next user query
11 NODE-EXEC-ALL(n,Q)

Algorithm 1: Core Exploration Loop

DICE-PLAN-DETERMINE(QSpec, CF)
1 PSpec ← GET-SPEC-PROBABILITIES(QSpec)
2 PSSpec ← SIBLING-ADJUSTMENT(PSpec, CF)
3 Accuracy Gains← GENERATE-ACCURACY-GAINS-VECTOR()
4 Unified Queries← QUERY-UNIFICATION(QSpec)
5 PUnified Queries ← {}
6 for each UQ in Unified Queries
7 do
8 PUQ ←

∑
Q∈UQ PSSpec(Q)

9 Unified Accuracies = Unified Queries ×
10 Accuracy Gains
11 DESC-SORT(Unified Accuracies)
12 return Unified Accuracies

Algorithm 2: DICE Execution Strategy

Algorithm 1 (Core Exploration Loop) describes the overall
DICE cube exploration system. A user first selects a query
(Line 5) which is then executed (Line 6). The system then

enumerates all the different possible speculative queries based
on the cube exploration model described earlier (Line 7) and
ranks them (Line 8). It then distributes the workload across
all the available nodes (Lines 9−−11). Next, in Algorithm 2,
we formally describe how DICE ranks the speculative queries
at different sampling rates.

Algorithm 2 (DICE Execution Strategy) starts by first
finding out the normalized probabilities Pspec given a set of
speculative queries (Line 1), and reweighting probabilities of
the sibling queries as described in Section III-D (Line 2). Next,
it generates the vector of the estimated accuracy gains for all
sampling rates (Line 3) and then performs unification over all
the speculative queries (Line 4) as given in Section III-F.
Finally, it ranks the unified queries at different sampling rates
by the product of their probabilities and their corresponding
sampling rate accuracy gains (Lines 5−−11) and returns the
sorted queries (Line 12).

F. Optimization: Query Unification

We now detail unification, a technique to speed up query ex-
ecution. For each traversal, the number of speculative queries
given the current facet f(dg,

−−−→
db : vb), in the worst case is:

NumParent = |
−→
db |

NumChild =
∑

dim∈{Dimensions}−{
−→
db,dg}

Cardinality(dim)

NumSibling =
∑

dim∈
−→
db
Cardinality(dim)− |

−→
db |

NumPivot = Cardinality(dg) ∗ |
−→
db |

Consequently, one can infer that the total number of specu-
lative queries could be greater than the sum of the cardinalities
of all the dimensions. Further, taking replication of queries due
to usage of table shards results into consideration, the total
number of speculative queries is equal to the product of the
number of table shards and the number of distinct speculative
queries. Hence, it is not feasible to run all the speculative
queries for most real-world datasets at high sampling rates
within interactive time bounds.

We can observe that the generation of speculative queries
leads to several queries that differ only by the value of
a single bound dimension. Unifying multiple such queries
into a lesser number of queries becomes essential since
concurrently running all of them will congest the system.
We have used two techniques of minimizing the number of
queries by unification. The first is to unify WHERE clauses on
a column into a GROUP BY on the column, and the second
is to split a dimension’s domain into ranges, and issuing
range-based queries. The results of these unified queries can
be post-processed to extract results for the user query.

Groupby Based Unification: Multiple queries can be
unified into a single query by replacing the bound dimension
that takes multiple values by a GROUP BY on the same
dimension when the cardinality of a dimension is moderately
high (i.e. above a set threshold). This unification leads to
the following speculative queries for the current user facet
f(dg,

−−−→
db : vb) in a cube of dimensions

−→
d :

477Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on August 28,2023 at 23:31:45 UTC from IEEE Xplore. Restrictions apply.

Parent− Set = {∀di; di ∈
−→
db : f(dg,

−−−→
db : vb − di : vi)}

Sibling − Set = {∀di; di ∈
−→
db : f(dg, di,

−−−→
db : vb − di : vi)}

Pivot− Set = {∀di; di ∈
−→
db : f(dg, di,

−−−→
db : vb − di : vi)}

Child− Set = {∀di; di ∈
−→
d −
−→
db : f(dg, di,

−−−→
db : vb)}

The sibling and pivot queries thus generated are identical.
One can also notice that a parent query f(dg,

−−−→
db : vb−di : vi)

can be answered by the corresponding sibling/pivot query
f(dg, di,

−−−→
db : vb − di : vi) where di : vi ∈

−−−→
db : vb. Thus,

groupby-based unification leads to an enormous reduction
in possible queries needed to be run. However, the results
for the next query would need to be retrieved from the
new unified query’s result set, and this post-processing
may be expensive. Typically, groupby unification is useful,
specifically for moderately high (thresholds set empirically)
cardinality dimensions. There is, clearly, a tradeoff between
running a large number of non-unified queries, and a single
unified query with a large result set.

Range Based Unification:
At very high cardinalities, the problem of the very high num-

ber of speculative queries is not resolved by the groupby-based
unification since the result set is expected to be large. Unifying
the queries into ranges was found to be extremely useful.
We convert multiple speculative queries f(dg,

−−−−−−→
db : v1..vn) into

fewer range-based speculative queries f(dg,
−−−−−−−−→
db : [v1..vn1)),

f(dg,
−−−−−−−−−→
db : [vn1

..vn2
)) .. f(dg,

−−−−−−−−−−−→
db : [vnk−1

..vnk]). The choice
between range-based and groupby-based unification depends
on the column cardinality and is a tunable parameter. This
parameter can be obtained empirically using the marginal
distribution of the column and the prior workload.

An interesting observation with range queries is that even
with careful tuning of the ranges, the cardinality of the data for
each range-unified query is large enough to motivate the use
of an index on range-unified columns. Thus, we only index
dimensions with very high cardinalities. While this introduces
variability into our cost model, the lack of a good determiner
for the cost of a range-unified query and aforementioned lack
of a fast solution to our linear integer programming problem
compels us to invoke Occam’s Razor and use a unit cost in this
case and the resultant greedy algorithm for query selection.

G. Optimality of DICE

As described in Sections III-D and III-F, we cast the
linear integer programming problem of maximizing the overall
accuracy under the constraint of maximum allocated time into
a greedy algorithm of choosing the new query at an additional
unit sampling rate. Also, as mentioned earlier in Section II-C,
we would not know the accuracy gain without actually running
the query. Thus, approximating the gain using the estimated
accuracy gain based on the MLE Consistency property is a
sound assumption to make. Therefore, the DICE algorithm of
choosing a new query with the highest product of probability
from the workload and the estimated accuracy gain at the
newer sampling rate will indeed be the optimal strategy.

IV. EXPERIMENTS AND EVALUATION

A. Experimental Setup

DICE is implemented in Java running on Sun Java 6 VMs
and uses PostgreSQL 9.1 as the database for each slave node.
By default, we discard the first run of each experiment and
report the average of the following three runs (runs were nearly
identical for all experiments, with no outliers, also observed by
the low standard deviation). We perform an exhaustive analysis
of the DICE system over a variety of cluster configurations,
workloads and algorithms for our metrics, as described below.

Cluster Configurations: CLUSTERSMALL is a private cluster
built on commodity hardware with only DICE running
during the experiments. The master node has 1 Quad Core
3.30GHz Intel i5 CPU, 16GB DDR3 RAM @1333MHz &
256GB SATA HDD and the 15 slave nodes each possess 1
Quad Core 2.13GHz Intel Xeon CPU, 4GB DDR2 RAM
@667MHz & 720GB SATA HDD. Nodes are connected over
a Gigabit Ethernet switch. Each slave contains 4 workers.
CLUSTERCLOUD is an Amazon EC2 configuration of 1
master and 50 slaves of the c1.xlarge type, each with
7GB Memory and 8 Virtual cores, powering 8 workers per
slave node. All nodes for both configurations run Ubuntu
Linux 12.04 LTS.

Dataset: Our generated dataset conforms to the example
schema provided in Section I, and comprises 1 billion rows
sharded uniformly across all nodes with a default table shard
size of 1M rows. The distributions and cardinalities are:
location[uniform]:[zone{10}:datacenter{100}:rack{1000}],
time[gaussian]:[month{12}:week{52}:hour{24}] and
iops[zipfian]:{10000}.
Each table shard is 102MB on disk, with a data size of 81MB
and index size of 21MB, yielding in a total of 1000 table
shards spanning 100GB. Unless otherwise specified, we run
experiments at 20% sampling rate i.e., 200 million rows are
actually processed. 1

Workloads: The user was asked to explore the dataset
taking into consideration the faceted exploration model using
a popular BI tool. Query logs from the tool were used to
derive the workload. A workload depicts a user query session
of 10 facet traversals, with the measure function AVG. Unless
stated, 3 workloads were used for each experiment and with
the aforementioned 3 runs, results into a sample size of 90
queries. The viewing latency threshold τV is fixed to 5000ms.

Algorithms: We compare five different algorithms:
ALGONOSPEC stands for “No Speculation” and represents
the baseline use case, i.e. ad-hoc distributed querying without
any speculation, similar in design to modern distributed query
execution engines. ALGORANDOM represents distributed
querying using query speculation, but the queries chosen to

1It should be noted that due to the variability of schema, row / columnar
storage layouts and hardware performance, our focus is on the number of
rows processed, and not the disk representation.

478Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on August 28,2023 at 23:31:45 UTC from IEEE Xplore. Restrictions apply.

be speculated are selected randomly from the set of possible
facet traversals. ALGOUNIFORM selects speculative queries
uniformly from each type of facet traversal. ALGODICE
uses the DICE speculative query selection technique.
ALGOPERFECT “improves” upon DICE by allowing for a
perfect prediction of the subsequent ad-hoc query – this
represents the (hypothetical) best-case performance of our
speculation strategy, and is included to demonstrate the
overall potential of speculative caching.

Metrics: AVERAGE LATENCY is measured in milliseconds as
the average latency of a query across sessions and runs. We
also depict ±1 standard deviation of latency using error bars
in most of our results. AVERAGE ACCURACY is measured as
the absolute percentage deviation of the sampled results from
the results over the entire dataset.

B. Results

1) Impact of Data Size: We observe, in Figure 3 & 4, the
impact of data size on the latency observed by each algorithm
by varying the target sample size for the ad-hoc queries
in our workload. ALGONOSPEC scales almost linearly, and
exceeds the sub-second threshold for 200M rows. Despite issu-
ing speculative queries, ALGORANDOM and ALGOUNIFORM
perform just as poorly as ALGONOSPEC, validating the need
for a principled approach to speculative querying that DICE
provides. ALGODICE stays within the sub-second threshold,
and scales quite well for increasing size, performing almost as
well as ALGOPERFECT (which is the lower bound for latency
in this case) and manages to maintain a near 100% cache hit
ratio, especially for smaller sampling rates. A 1-tailed t-test
confirms (p-value 0.05, t-statistic 58.41 > required critical
value 1.662) that ALGODICE’s speedup over ALGONOSPEC
is statistically significant. Another observation is a perfor-
mance envelope with ALGOPERFECT exists – there are several
constant-time overheads which could be further optimized,
an opportunity for future work. Figure 4 performs the same
experiment at a larger scale on CLUSTERCLOUD, allowing for
cube exploration over the 1 billion rows (100% sampling)
while maintaining a sub-second average latency – 33%
faster than the baseline ALGONOSPEC.

2) Sampling & Accuracy: Since DICE allows the user to
vary the sampling rate, we present a plot of the AVERAGE
ACCURACY for a sample workload, compared to results from
aggregation over the full dataset. It should be noted that
accuracy depends on multiple factors. First and foremost,
accuracy is dependent on skew in the data. As described in
the schema, our dataset contains a multitude of distributions
across all the dimensions. Second, the selectivity of queries
in the workload will impact the sensitivity of error. Third, the
placement of the data is a significant contributing factor: since
data is horizontally sharded across multiple nodes, sampling
and aggregation of data is impacted by the uniformity of data
placement. In Figure 5, we present the average accuracy for
a workload at varying sampling rates over all 1B rows. For
this workload, accuracy increases steadily till the 50% mark,

after which the benefits of increasing the sampling taper off,
slowly reaching full accuracy at the 100% sampling rate.

0"

200"

400"

600"

800"

1000"

1200"

1400"

1600"

1800"

0" 50" 100" 150" 200"

Ti
m
e%
(m

s)
%

Sample%Size%(millions%of%rows)%

Cluster:)Small)

NOSPEC" Random" Uniform"

DICE" Perfect"

Fig. 3. Varying Size of Dataset: CLUSTERSMALL

250$ 500$ 750$ 1000$
0$

200$

400$

600$

800$

1000$

1200$

1400$

1600$

Ti
m
e%
(m

s)
%

Sample%Size%(millions%of%rows)%

Cluster:)Cloud)

NOSPEC$ DICE$ Perfect$

Fig. 4. Varying Size of Dataset: CLUSTERCLOUD

5" 10" 20" 50" 75" 100"
40"

50"

60"

70"

80"

90"

100"

Ac
cu
ra
cy
'(%

)'

Sample'Size'(%)'

Cluster:)Small)
Dataset:)1)billion)rows)

Fig. 5. Accuracy over a workload

0"

200"

400"

600"

800"

1000"

1200"

1400"

1600"

0" 2" 4" 6" 8" 10"

Ti
m
e%
(m

s)
%

Number%of%Dimensions%

Cluster:)Small)

NOSPEC" DICE"

Fig. 6. Impact of Number of Dimensions

3) Number of Dimensions: Figure 6 shows how varying the
number of dimensions in a query affects its execution time.

479Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on August 28,2023 at 23:31:45 UTC from IEEE Xplore. Restrictions apply.

Dimensions are increased by adding new WHERE predicates
to the query. As seen in Figure 6, execution time decreases up
to a certain point and then starts increasing. The decreasing
slope in the curve is caused by selectivity – as dimensions
are added, less number of rows are processed, allowing for
faster materialization of resultsets. After a certain point, the
evaluation cost of the multiple WHERE clauses takes over,
especially because the order of filter dimensions is not ideal.

4) Number of Slave Nodes: We vary the number of slave
nodes in Figure 7, while keeping the size of the data constant at
200M rows. As expected, for all algorithms, latencies decrease
as the number of nodes increases. An interesting observation
is made for ALGODICE however – for 4 nodes, DICE thrashes
memory due to the amount of data involved and the number
of speculative queries, which is not a problem for both
ALGONOSPEC (no speculation / caching) or ALGOPERFECT
(exactly one ad-hoc query being cached).

0"

500"

1000"

1500"

2000"

2500"

3000"

3500"

2" 4" 6" 8" 10" 12" 14" 16"

Ti
m
e%
(m

s)
%

Number%of%Nodes%

Cluster:)Small)

NOSPEC"
DICE"
Perfect"

Fig. 7. Varying the Number of Slave Nodes

40#
50#
60#
70#
80#
90#
100#

0# 50# 100# 150# 200#

Ca
ch
e&
Hi
t&R

at
e&
(%

)&

Sample&Size&(millions&of&rows)&

Cluster:)Small)

DICE#

Fig. 8. Cache Hit Change with Sampling Rate Change

5) Cache Hit Variability: Since the cache hit rate is a key
contributor to the average latency of a session, in Figure 8 we
study how the cache hit rate varies with the sampling rate for
a fixed cache size. We use the cache hit rate as a proportional
measure of the prediction quality. Higher cache hits are a direct
result of high quality of speculation. We achieve close to a
100% hit rate for 50 million sampled rows. As we increase
the sampling rate, we see the cache hit rate decreasing nearly
linearly, since the total number of speculative queries increases
linearly with the sampling rate.

6) Sample Session: As an anecdotal example, we present
in Figure 9 the trace of a single cube exploration ses-
sion for ALGONOSPEC, ALGODICE and ALGOPERFECT on
CLUSTERSMALL. The X axis depicts successive ad-hoc
queries in a session. (It should be noted that while the bars are
stacked together for convenience for the reader, the session for
each algorithm is executed separately.) The Y axis represents
AVERAGE LATENCY. Cache hit rate for ALGODICE is shown
as a label above the bars. The cache hit rate for the first query

0"

500"

1000"

1500"

2000"

2500"

3000"

3500"

Ti
m
e%
(m

s)
% NOSPEC"

DICE"

Perfect"0 .75
.75 .68

1 1 1

1 .68

.75

Cluster: Small

Fig. 9. Individual Latencies for Anecdotal Query Session

is 0.0, since there has been no speculation and the caches are
empty. ALGODICE performs almost as well as ALGOPERFECT
with hit rates equal or closer to 1.0.

7) Impact of Various Techniques: We now study in Fig-
ure 10, the performance impact of the various algorithms and
optimizations to our system on the CLUSTERSMALL cluster.
We compare the AVERAGE LATENCY of various techniques
compared to ALGONOSPEC. ALGOUNIFORM is slightly faster
due to some of the speculative queries being part of the
session. Including the unification optimization discussed in
Section III-F reduces the number of concurrent queries, im-
proving latency. Finally, including the locality model and cost-
based prioritization of speculative queries yields ALGODICE,
which outperforms all other methods.

0	

500	

1000	

1500	

2000	

NOSPEC	 UNIFORM	 UNIFORM	 +	
BATCHING	

DICE	

Ti
m
e	
(m

s)
	

Cluster:	 Small 	 	

Fig. 10. Impact of Various Techniques

C. Real-world Usage and User Study

Real-world Query Logs: To evaluate the real-world efficacy
of the facet model, we procured a real-world query log of ad-
hoc analytical queries by real users on a production system
generated HIVE data warehouse of an Internet advertising
company. Considering only the aggregation queries (with the
group by clause), the log spanned 509 queries. Amongst
them 46 query sessions were detected which comprised of 116
queries i.e. 22.97% of the queries. The traversals described in
the DICE model were found to cover 100% of the session-
based queries, demonstrating that our traversal model is in-
deed expressive enough to allow for significant speedups (the
remainder are executed traditionally, without speculation.)
User Studies: We performed a user study to compare the
effectiveness DICE over traditional methods.The study was
performed with 10 graduate students across the department
who were knowledgeable in databases and data cubing, deter-
mined using a pre-test. The users were then given a pre-task
tutorial on data cubing and our data model. They were then
asked to explore the cube using the faceted model for 10 ad-
hoc queries of their choice. They were not told if the DICE
speculation was turned on or off (50% of the users each).
After the session, the user’s query session was repeated in the

480Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on August 28,2023 at 23:31:45 UTC from IEEE Xplore. Restrictions apply.

other mode (speculation was turned on if it was off before and
vice versa) to get comparable times. Care was taken to avoid
different biases. The pre-task tutorial avoided bias against prior
knowledge of data cubing and our data model. Having only
1 total task that lasted less than 10 minutes prevented fatigue
bias, and the same user workload being re-run (automated) for
the alternate mode avoided learning effects. The test algorithm
being split equally dealt with carryover effects.

The mean and standard deviation for Time-To-Task for the
entire query session of 10 queries using ALGODICE were
47757 ms and 937 ms and for ALGONOSPEC were 54506 ms
and 3111 ms: i.e. on average users queried 7 seconds faster
with ALGODICE. Consider null hypothesis as ALGODICE
execution time to be no different than ALGONOSPEC time
and alternate hypothesis to be that ALGODICE is faster than
ALGONOSPEC. The query session time which consists of
query execution time, query input time and result view time
is significantly lesser for our method, ALGODICE, compared
with ALGONOSPEC based on a 1-tailed t-test (t-statistic
value of 21.77 > 1.833 needed for a p-value of 0.05).

Speculation Noticeability: While DICE speedups are objec-
tively significant, an important question for a user-involved
system is: Can users notice the difference and have a
preference? To test this, the users were asked to report which
query session (i.e. with or without DICE) they found out to be
faster. Results were unanimous: all our users preferred the
ALGODICE session over ALGONOSPEC. Clearly, reduction
in query times due to usage of ALGODICE speculation is
indeed noticeable to the user.

User Satisfaction: At the end of the query session, the users
were asked to rate their satisfaction (10:extremely happy,
5:neutral, 1:extremely unhappy) for both the faceted traversal
model and the overall system. For the traversal model, the
main criteria they were asked to take into consideration were
the traversals allowed under DICE, any extra traversals they
thought it lacked, and the ease of traversal. The mean rating
for the faceted model was 7.9 with a standard deviation of
1.54. Consider the null hypothesis of the faceted model ratings
being equal to 5 (i.e. neutral) and the alternate hypothesis of
the faceted model rating being greater than 5. The value of
the t-statistic was found out to be 5.67 which is much greater
than the critical value of 1.833 needed for a 1-tailed t-test for a
p-value of 0.05 showing that the traversal model satisfaction
was statistically significantly better than random/neutral
response. Additionally, for the overall DICE system, the
average User-Satisfaction was very high: 8.7 with a standard
deviation of 0.82, summarizing our overall assertion that DICE
not only provides objective speedups, it also provides a
significantly better experience for the end user.

V. RELATED WORK

Cube Exploration: While the original cube paper [19] provides
for a variety of operators, facet traversals introduced in this
paper are typical to interactions on analytics user interfaces.
Work by Sarawagi et al. on mining of interesting regions [45]

and exploration operators [46] can be easily plugged into our
speculation framework. Kamber et al. [27] have discussed
metarule exploration, and dynamic exploration on cube subsets
have been discussed in [31]. Our contribution is towards
improving interactive exploration in a session context.
Cube Materialization: Materialization strategies range from
full-cube materialization over MapReduce [37] to region-
specific materialization [11] to selective partial materializa-
tion. Optimization techniques exist for optimizing intra-query
parallelization [3], but do not consider multiple queries as part
of an interactive session.
Distributed Query Execution: Ad-hoc analysis over large
datasets has been made popular with the availability of declar-
ative query languages such as SCOPE [8], Pig [40] and
Hive [52], which translate to MapReduce-oriented flows, and
is not ideal for interactive workloads. Ideas such as columnar
storage layouts [5], [20], [49], hierarchical execution [35],
distributed database hybrids [1], online distributed aggrega-
tion [41] and main-memory engines [18] have achieved low
latencies when querying over large datasets, resulting in a spurt
of development activity in this area, resulting in implementa-
tions such as Drill, Impala, Tez, PivotalHD, HAWQ, Peregrine
and Druid, projects that target single query execution latency.
Prefetching: The idea of speculative execution of queries
and prefetching results has been discussed before [48], [51].
PROMISE [44] investigates the likelihood of future queries and
can be used to supplant the workload-based approach in our
paper. Ramachandran et al. [43] focus on the speculation of
exact, non-approximate drill-down queries. Improvements in
speculation quality based on ideas in these papers can be used
to better prioritize and sample our speculative queries.
Online Aggregation: Online aggregation ideas proposed by
Hellerstein et al. [24] and the related CONTROL [23] project
which surface approximate answers are highly relevant and re-
lated work. Our system builds upon these ideas in a distributed
cubing environment, combining user-directed techniques of
speculative execution and sampling.
Sampling-based Estimation: There is significant prior work in
using sampling for approximating query results [38]. Jin et
al. [26] detail the approximation of OLAP queries using pre-
summarized statistics. Wang et al. discuss [55] data placement,
[56] details the computation of errors for a GROUP BY query
over multitable joins, and [32] discuss a sampling-based
framework to materialize cubes. BlinkDB [2] performs an
offline sampling step of multiple column combinations. As
mentioned before, the ideas presented in BlinkDB are orthog-
onal to both the faceted exploration model proposed by our
work, and the speculation-based execution architecture. Strate-
gies for stratification using prior workloads [10] and methods
to increase sensitivity for low-selectivity attributes [54] have
also been considered before.
Data Interaction: The proliferation of business intelligence
tools that leverage visualization and interactive interfaces [4],
[6], [15], [28], [57] to explore large multidimensional datasets
highly motivate the need for a distributed interactive cube
exploration system. Tools such as Tableau [21] translate visual

481Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on August 28,2023 at 23:31:45 UTC from IEEE Xplore. Restrictions apply.

interactions into a series of SQL queries, and interactive loops
correlate directly with our session-based model. As discussed
in Section IV, we observe that such interactions directly
correspond to facet traversals, allowing us to utilize actual
workloads from such tools in our experimental evaluation.
Olston et al. [39], propose the interactive analysis of web-
scale data using query templates. Cetintemel et al. [7] envision
a “guidance” system for interactive querying. Session-oriented
sampling and speculation approaches described in our paper
can significantly improve the interactivity of such a system.

VI. CONCLUSION AND FUTURE WORK

Given the proliferation of commodity distributed infras-
tructure and big data analytics applications, there is a com-
pelling need for systems that allow interactive exploration of
aggregated data. As demonstrated in the experiments, DICE
meets this need, and allows for exploration of 1-billion-tuple
data cubes at sub-second latencies, significantly outperforming
existing methods. The system uses a combination of three
complementary strategies: a faceted cube exploration model,
data sampling and speculative caching to provide interaction-
level performance for the end-user.

Going forward, there are several avenues of future work.
The inclusion of interestingness of cube groups into the explo-
ration framework would be a very useful extension. This would
bridge the gap between automated exposition of insights, and
ad-hoc exploration. One possible way to include this into
DICE is to formulate the interestingness of a facet, which can
be mined in an initial offline step during the ingestion of a table
shard, and stored in conjunction with the dataset. During the
exploration phase, this can considered when prioritizing facets
to speculatively execute. DICE can be trivially extended by
modeling user behavior through query logs and plugging in
new traversal types. We plan on modeling traversal patterns
for 2 dimensional GROUP BYs. Further, we intend to support
multi-tenancy; this would allow us to leverage caching benefits
across multiple users, allowing for higher speedups. Estimated
speculation time can be divided between different users based
on their importance. Another possible extension is to combine
methods for offline and online materialization of data cubes
by identifying the fraction of the cube to fully prematerialize.
A possible approach is to materialize an approximate and
compressed representation [17] of the data cube, and use the
online execution step to increase the quality of the answer
based on the approximate model [22].

REFERENCES

[1] A. Abouzeid, K. Bajda-Pawlikowski, D. Abadi, A. Silberschatz, and
A. Rasin. HadoopDB: An Architectural Hybrid of MapReduce and
DBMS Technologies for Analytical Workloads. VLDB, 2009.

[2] S. Agarwal, A. P. Iyer, A. Panda, S. Madden, B. Mozafari, and I. Stoica.
Blink and It’s Done: Interactive Queries on Very Large Data. VLDB,
2012.

[3] F. Akal, K. Böhm, and H. Schek. OLAP Query Evaluation in a Database
Cluster: A Performance Study on Intra-Query Parallelism. ADBIS, 2002.

[4] M. Barnett, B. Chandramouli, R. DeLine, S. Drucker, D. Fisher,
J. Goldstein, P. Morrison, and J. Platt. Stat!-An Interactive Analytics
Environment for Big Data. SIGMOD, 2013.

[5] P. A. Boncz, M. Zukowski, and N. Nes. MonetDB/X100: Hyper-
Pipelining Query Execution. CIDR, 2005.

[6] A. Buja, D. Cook, and D. F. Swayne. Interactive High-Dimensional
Data Visualization. Computational and Graphical Statistics, 1996.

[7] U. Çetintemel, M. Cherniack, J. DeBrabant, Y. Diao, K. Dimitriadou,
A. Kalinin, O. Papaemmanouil, and S. B. Zdonik. Query Steering for
Interactive Data Exploration. CIDR, 2013.

[8] R. Chaiken, B. Jenkins, P. Larson, B. Ramsey, et al. SCOPE: Easy and
Efficient Parallel Processing of Massive Data Sets. VLDB, 2008.

[9] B. Chandramouli, J. Goldstein, R. Barga, et al. Accurate Latency
Estimation in a Distributed Event Processing System. ICDE, 2011.

[10] S. Chaudhuri, G. Das, and V. Narasayya. Optimized Stratified Sampling
for Approximate Query Processing. TODS, 2007.

[11] Y. Chen, A. Rau-Chaplin, et al. cgmOLAP: Efficient Parallel Generation
and Querying of Terabyte Size ROLAP Data Cubes. ICDE, 2006.

[12] S.-J. Chun, C.-W. Chung, and S.-L. Lee. Space-Efficient Cubes for
OLAP Range-Sum Queries. DSS, 2004.

[13] W. G. Cochran. Sampling Techniques. John Wiley & Sons, 2007.
[14] D. Deutch, Z. G. Ives, T. Milo, and V. Tannen. Caravan: Provisioning

for What-If Analysis. CIDR, 2013.
[15] A. Dubrawski, M. Sabhnani, et al. Interactive Manipulation, Visualiza-

tion Analysis of Large Sets of Multidimensional Time Series in Health
Informatics. INFORMS, 2008.

[16] U. Fischer et al. Forecasting the Data Cube: A Model Configuration
Advisor for Multi-Dimensional Data Sets. CITY, 2013.

[17] N. Friedman et al. Learning Bayesian Network Structure from Massive
Datasets. UAI, 1999.

[18] H. Garcia-Molina and K. Salem. Main Memory Database Systems: An
Overview. TKDE, 1992.

[19] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, et al. Data Cube:
A Relational Aggregation Operator Generalizing Group-By, Cross-Tab,
and Sub-Totals. Data Mining and Knowledge Discovery, 1997.

[20] A. Hall et al. Processing a Trillion Cells Per Mouse Click. VLDB, 2012.
[21] P. Hanrahan. VizQL: A Language for Query, Analysis and Visualization.

SIGMOD, 2006.
[22] V. Harinarayan, A. Rajaraman, and J. D. Ullman. Implementing Data

Cubes Efficiently. SIGMOD, 1996.
[23] J. Hellerstein, R. Avnur, A. Chou, C. Hidber, et al. Interactive Data

Analysis: The Control Project. Computer, 1999.
[24] J. Hellerstein et al. Online Aggregation. SIGMOD, 1997.
[25] T. Jäkel et al. Pack Indexing for Time-Constrained In-Memory Query

Processing. BTW, 2013.
[26] R. Jin, L. Glimcher, C. Jermaine, and G. Agrawal. New Sampling-Based

Estimators for Olap Queries. ICDE, 2006.
[27] M. Kamber et al. Metarule-Guided Mining of Association Rules using

Data Cubes. KDD, 1997.
[28] D. Keim, F. Mansmann, et al. Visual Analytics: Scope and Challenges.

Visual Data Mining, 2008.
[29] A. Kemper et al. HyPer: A Hybrid OLTP&OLAP Main Memory

Database System Based on Virtual Memory Snapshots. ICDE, 2011.
[30] N. Khoussainova et al. Session-Based Browsing for More Effective

Query Reuse. SSDBM, 2011.
[31] B. Leonhardi, B. Mitschang, R. Pulido, et al. Augmenting OLAP

Exploration with Dynamic Advanced Analytics. EDBT, 2010.
[32] X. Li, J. Han, Z. Yin, J.-G. Lee, et al. Sampling Cube: A Framework

for Statistical OLAP over Sampling Data. SIGMOD, 2008.
[33] X. Liu et al. A Text Cube Approach to Human, Social and Cultural

Behavior in the Twitter Stream. SBP, 2013.
[34] S. L. Lohr. Sampling: Design and Analysis. Cengage Learning, 2010.
[35] S. Melnik, A. Gubarev, J. Long, et al. Dremel: Interactive Analysis of

Web-Scale Datasets. VLDB, 2010.
[36] R. Miller. Response Time in Man-Computer Conversational Transac-

tions. FJCC, 1968.
[37] A. Nandi, C. Yu, P. Bohannon, and R. Ramakrishnan. Distributed Cube

Materialization on Holistic Measures. ICDE, 2011.
[38] N. Ntarmos, P. Triantafillou, et al. Statistical Structures for Internet-

Scale Data Management. VLDB, 2009.
[39] C. Olston, E. Bortnikov, K. Elmeleegy, F. Junqueira, and B. Reed.

Interactive Analysis of Web-Scale Data. CIDR, 2009.
[40] C. Olston, B. Reed, et al. Pig Latin: A Not-So-Foreign Language for

Data Processing. SIGMOD, 2008.
[41] N. Pansare, V. R. Borkar, C. Jermaine, and T. Condie. Online Aggre-

gation for Large Mapreduce Jobs. PVLDB, 2011.
[42] C. Raı̈ssi et al. Computing Closed Skycubes. VLDB, 2010.

482Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on August 28,2023 at 23:31:45 UTC from IEEE Xplore. Restrictions apply.

[43] K. Ramachandran, B. Shah, and V. V. Raghavan. Dynamic Pre-Fetching
of Views Based on User-Access Patterns in an OLAP System. SIGMOD,
2005.

[44] C. Sapia. PROMISE: Predicting Query Behavior to Enable Predictive
Caching Strategies for OLAP Systems. DaWaK, 2000.

[45] S. Sarawagi, R. Agrawal, and N. Megiddo. Discovery-Driven Explo-
ration of OLAP Data Cubes. EDBT, 1998.

[46] S. Sarawagi and G. Sathe. i3: Intelligent, Interactive Investigation of
OLAP Data Cubes. SIGMOD, 2000.

[47] B. Shneiderman. Response Time and Display Rate in Human Perfor-
mance with Computers. CSUR, 1984.

[48] A. Smith. Sequentiality and Prefetching. TODS, 1978.
[49] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M. Cherniack, et al.

C-Store: A Column-Oriented DBMS. VLDB, 2005.
[50] F. Tao et al. EventCube: Multi-Dimensional Search and Mining of

Structured and Text Data. KDD, 2013.
[51] F. Tauheed et al. SCOUT: Prefetching for Latent Structure Following

Queries. VLDB, 2012.
[52] A. Thusoo, J. Sarma, N. Jain, et al. Hive-A Petabyte Scale Data

Warehouse using Hadoop. ICDE, 2010.
[53] D. Tunkelang. Faceted Search. Synthesis Lectures on Information

Concepts, Retrieval, and Services, 2009.
[54] F. Wang and G. Agrawal. Effective Stratification for Low Selectivity

Queries on Deep Web Data Sources. CIKM, 2011.
[55] Y. Wang, S. Parthasarathy, and P. Sadayappan. Stratification Driven

Placement of Complex Data: A Framework for Distributed Data Ana-
lytics. ICDE, 2013.

[56] F. Xu, C. Jermaine, and A. Dobra. Confidence Bounds for Sampling-
based Group by Estimates. TODS, 2008.

[57] J. Yi et al. Toward a Deeper Understanding of the Role of Interaction
in Information Visualization. VCG, 2007.

APPENDIX

We build upon stratified sampling and post-
stratification [13] for our sampling framework. Error bounds
for aggregation queries are based on the variance (across
samples) of the measure for each cube group. As an initial
step, we combine the variance for the same group across
multiple queries, after which the variances across multiple
groups are combined to give an error estimate for the entire
query.

TABLE I
LIST OF NOTATIONS USED IN SECTION II-C

Symbol Explanation
s2h variance of the group h
nh number of tuples in the group h in the sample

nhi
number of tuples belonging to the group h from
the ith query

n total number of tuples in the sample
mhi mean of the group h from the ith query
mh mean of the group h from all the queries
vhi variance of the group h from the ith query
p proportion of tuples selected by the where clause
V̂ [θ̂] variance of the estimator for the parameter θ
H number of groups in the union of all the queries
Nh number of tuples in group h in the dataset
N number of tuples in the dataset

Combining variances within groups: In order to deliver
results at higher sampling rates, DICE runs the same query
on multiple randomly chosen shards on multiple nodes. This
results in the same cube group being possibly obtained from
the multiple table shards. Hence, the statistics for the same
group from these multiple queries need to be combined to-
gether. While combining the AVG, SUM and COUNT is straight

forward, we present a technique for combining variances as

s2
h =

1

nh − 1
(

numQ∑
i=1

nhi(mhi−mh)2)+
∑
i

(nhi−1)vhi) (2)

where numQ is the number of queries that a query needs
to be replicated to. Thus, we get the requisite statistics for a
combined group across all the replicated queries.

Continuing our motivating example, the faceted representa-
tion of the query is f(rack, hour : 6, datacenter : EU) with
the measure AVG and measure dimension iops . We append
the COUNT and VARIANCE measures to the queries since they
are needed as given in Equation (2) to combine variances for
the same group across multiple queries. Assume the query is
run on a single shard on 2 nodes and result into a sampling rate
of 10%, returning us groups and the corresponding measures
from the two queries respectively as:

{[rack:1,hour:6,datacenter:EU,AVG:10,COUNT:5,VAR:4],
[rack:2,hour:6,datacenter:EU,AVG:12,COUNT:6,VAR:2]} &

{[rack:1,hour:6,datacenter:EU,AVG:5,COUNT:8,VAR:1],
[rack:2,hour:6,datacenter:EU,AVG:6,COUNT:7,VAR:2]}.

Plugging in the values from above into (2), we get the variance
for the combined group [rack:1,hour:6,datacenter:EU] as s2

1 =
8.32 and for [rack:2,hour:6,datacenter:EU] as s2

2 = 11.52.

Combining variances across groups: From the variances of
each of the combined groups, we can get an error estimate
for the combination of all of these groups i.e. the combined
result set. We consider three algebraic measures SUM, AVG
and COUNT. From the standard sampling theory, the variance
of the estimator for the measure SUM can be given as:

V̂ [t̂] =
H∑

h=1

N2
h(1− nh

Nh
)
ŝh

2

nh
(3)

The variance of the estimator for the measure AVG can be
obtained by dividing the above value by N2.

For the measure COUNT, we can use the proportion estima-
tor since the where clause acts as the indicator function and
thus the variance of the estimator for COUNT can be given as:

V̂ [p̂] = (1− n

N
)
p̂(1− p̂)
n− 1

(4)

The above formulae cannot be used as they are since we
cannot know the value of Nh without accessing the entire data.
We resolve this issue by estimating Nh

N by nh
n and nh

Nh
by

the sampling rate which resulting into an unbiased estimator.
Holistic measures can be handled as described in [34].

Again plugging in the values we get, ŷ = 6.92 ∗ 13/26 +
8.77∗13/26 = 7.85 and V̂ [t̂] = (13

26)2 ∗ (1−0.1)∗ (8.32/13+
11.52/13) = 0.35

The error will be given by

ConfidenceInterval

2 ∗ Estimate
= zα

2
∗

√
V (θ̂)

θ̂
(5)

where θ̂ is the estimate of the measure parameter and V (θ̂)
is the variance of the estimate.

Thus, for a confidence of 95%, we can get the standard error
for the query as 1.96∗

√
0.35

7.85 = 0.15 resulting into an accuracy
of 85%.

483Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on August 28,2023 at 23:31:45 UTC from IEEE Xplore. Restrictions apply.

