
Finding Related Tables in Data Lakes for Interactive
Data Science

Yi Zhang
yizhang5@cis.upenn.edu
University of Pennsylvania

Philadelphia, PA

Zachary G. Ives
zives@cis.upenn.edu

University of Pennsylvania
Philadelphia, PA

ABSTRACT

Many modern data science applications build on data lakes,
schema-agnostic repositories of data files and data products
that offer limited organization and management capabilities.
There is a need to build data lake search capabilities into
data science environments, so scientists and analysts can
find tables, schemas, workflows, and datasets useful to their
task at hand. We develop search and management solutions
for the Jupyter Notebook data science platform, to enable
scientists to augment training data, find potential features to
extract, clean data, and find joinable or linkable tables. Our
core methods also generalize to other settings where compu-
tational tasks involve execution of programs or scripts.

CCS CONCEPTS

• Information systems→ Federated databases;

KEYWORDS

data lakes,table search,interactive data science,notebooks
ACM Reference Format:

Yi Zhang and Zachary G. Ives. 2020. Finding Related Tables in
Data Lakes for Interactive Data Science. In Proceedings of the 2020
ACM SIGMOD International Conference on Management of Data
(SIGMOD’20), June 14–19, 2020, Portland, OR, USA. ACM, New York,
NY, USA, 16 pages. https://doi.org/10.1145/3318464.3389726
1 INTRODUCTION

The data lake has emerged as a schema-agnostic repository
for data sources and analysis results (“data products”), pro-
viding centralized access to data. Typically, the data lake is
an abstraction over a distributed file system or an object

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SIGMOD’20, June 14–19, 2020, Portland, OR, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-6735-6/20/06. . . $15.00
https://doi.org/10.1145/3318464.3389726

store. Data lakes offer strong data access benefits, but they
generally do little to help a user find the most relevant data,
understand relationships among data products, or integrate
heterogeneous data sources or products.
Data lakes are used in many settings across the enter-

prise and within data science. We believe data lake manage-
ment [32] becomes especially necessary in collaborative data
science settings, as well as those in which data processing
methodologies are changing. A folder/file hierarchy is in-
adequate for tracking data that is updated across versions,
processed across (often similar) computational stages in a
workflow, used to train machine learning classifiers, and
analyzed by users. Data lakes were developed to promote
reuse of data (and associated workflows) — but if users are
unaware of what is available, or unable to trust what they
find, they end up reinventing their own schemas, import
processes, and cleaning processes. This not only leads to
inefficiencies and redundant work, but also inconsistency
in data processing, irregularity in data representation, and
challenges in maintainability.

Just as good software engineering promotesmodular, main-
tainable, and reusable software components, we need ways
of promoting reusable units of data and processing. Towards
this over-arching goal, we seek to help users find seman-
tically related datasets to facilitate common data analytics
tasks. Our work addresses interactive, “human-in-the-loop”
settings in which data scientists are undertaking data discov-
ery, wrangling, cleaning, and analysis tasks. We develop a
general framework for supporting multiple measures of table
relatedness, and build upon prior techniques developed for
looking at data-value and data-domain overlap to find union-
able [33] and joinable [9, 13, 45] tables, to find mappings to
common schemas [19] and to profile data to find joinable
tables [9, 13]. Juneau additionally considers the context and
intent of the user — by searching over the provenance of data
resources, and by allowing a user to specify what type of
task they are performing.
We focus in this paper on tabular and “shallow” hierar-

chical data that can be imported into (possibly non-first-
normal-form) relations: CSVs, structured files, external web
resources, and R and Pandas dataframes. We hypothesize
that during interactive data science tasks, users often want

Research 22: Data Lakes, Web, and Knowledge Graph SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

1951

https://doi.org/10.1145/3318464.3389726
https://doi.org/10.1145/3318464.3389726
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3318464.3389726&domain=pdf&date_stamp=2020-05-31

to search the data lake, not only by keyword, but using a
table, to find other related tables. Our implemented query-by-
table framework incorporates specialized relevance-ranking
criteria to support data wrangling and training tasks.
We enable searching over the inputs and outputs of data

science workflows, each comprised of discrete computational
steps or modules. Juneau assumes workflows are speci-
fied as sequences of cells within computational notebooks,
hosted for multiple users on the cloud, such as Jupyter Note-
book/JupyterLab, Apache Zeppelin, or RStudio. (Our work
generalizes to shell scripts or computational workflow sys-
tems [18, 31, 34], and it builds upon a recent demo [44] to
focus on effective ranking.) We further assume that the out-
put of eachmodule should be stored in a data lakewemanage,
alongside its provenance [8]. As the user works with data,
Juneau helps them find additional resources:

Augmenting training/validation data. Often, data from the
same or related sources is captured in multiple sessions (per-
haps by multiple users). Given a table from one such session,
a data scientist may wish to augment his or her data, to form
a bigger training or validation set for machine learning.

Linking data. Records in one database may have identifiers
referencing entries in another database. Joining on these
links brings in additional fields that may be useful to the
user or to a machine learning algorithm. It can be helpful for
users to know about such links that are implicit in the data.

Extracting machine learning features. Data scientists often
seek additional/alternative features for a given data instance.
In a collaborative setting, one data scientist may perform
specific feature engineering on a data set, while another may
do it in a different way. It can be helpful for each scientist to
see alternative feature engineering possibilities.
Data cleaning. Given a widely used table, a data scientist

may want to see examples of how the table is loaded or
cleaned. This involves finding alternative tables derived from
the same inputs, but perhaps with missing values filled in.

For the above scenarios, searching for tables by keywords [5,
38] or row values [47, 48] is inadequate: we need a broader
notion of relatedness that may consider schema similarity,
record-level overlap, description of data and workflows and
similarity in the workflows that create or use specific tables.
Tasks may involve more than searching for unionable [33]
or joinable [9, 45] tables. Given the complexity of each of our
target tasks, we develop a general framework for composing
multiple measures of similarity, choose a tractable subset of
features, and explore how to combine these to support new
classes of search. We make the following contributions:

• A framework for combining measures of table related-
ness, which uses top-k , pruning, and approximation
strategies to return the most related tables.

• A basic set of measures of table relatedness that con-
sider both row and column overlap, provenance, and
approximate matching, for multiple use cases.

• An implementation in Juneau, which extends Jupyter
Notebook with table search capabilities.

• Experimental validation of our methods’ accuracy and
scalability, via objective measures.

Section 2 defines the table search problem and explains our
approach. Section 3 proposes measures for table similarity
and relatedness. Section 4 then develops algorithms for these
measures and for querying for similar tables. In Section 5
we describe Juneau, which implements the query schemes
proposed in this paper. We then experimentally evaluate
the Juneau implementation in Section 6, before describing
related work in Section 7 and concluding in Section 8.

2 FINDING RELATED TABLES

As data scientists conduct their tasks, if they could easily
find related tables (or have these recommended to them as
“auto-completions”) rather than re-creating new ones, this
would help foster many of the benefits we associate with
good software engineering. Dataset and schema reuse would
ultimately make different data analysis processes more regu-
larized, and it would also provide natural ways of leveraging
common work on cleaning, curation, and standardization.
In this section, we formalize our problem, first by providing
more detail on the types of workflows and environments we
target, then by outlining the objectives of table search.

2.1 Workflows, Notebooks, and Data

While most of our techniques apply to any general corpus
of tables, we target a richer data lake environment, in which
we can observe tasks, provenance, and updates across time.
Juneau supports computational notebook software, such as
Jupyter Notebook [36] and its successor JupyterLab, Apache
Zeppelin, and RStudio. Within this environment, users are
performing multiple computational steps over data; we con-
sider the overall sequence of operations to be a (sometimes
one-off and ad hoc) computational workflow. Computational
notebook platforms directly capture workflows and data ex-
ploration by interleaving source code cells (code modules
in a workflow, executed in an external interpreter or query
system) with their outputs (in the form of rendered visualiza-
tions or tabular output). Such cells typically are appended to
the notebook sequentially, preserving a type of history. Addi-
tionally, cells in the computational notebook often produce
side effects by modifying state (variables whose values are
set, and readable by the next cell to execute) or producing
tables or files (which may be read by a future cell execution
that may even occur in another notebook).

Research 22: Data Lakes, Web, and Knowledge Graph SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

1952

!pip install …

Collecting scikit-learn …

sms_df.head()

class sms …
0 ham Go until …

Spam Classifier Task

sms_df[‘a’].hist(…)

sms_df = pd.read_csv(…)

MarkDown

IPython

Python (no output)

Python (no output)

Python (dataframe)

Python (visualization)

def top_k
…

spam
.csv

Environment:
!pip install

def
top_k

pd.read
_csv

sms_df

sms_df.
head()

sms_df

sms_df[a]
.hist()

Figure 1: A computational notebook, data model, and workflow graph. Cells may be executed out of order, as encoded by

blue lines in the data model. The workflow graph encodes cell dataflow dependencies.

Computational notebooks are typically stored as semi-
structured files, with limited data management. Notebook
files do not fully preserve either the history of cell ver-
sions and outputs, nor the order in which cells were exe-
cuted — which may result in non-reproducible notebooks.
However, recent projects have introduced reproducible note-
books [7, 28, 37]. Juneau adopts a similar approach: it re-
places the notebook software’s storage layer with a data lake
storage subsystem, and replaces the notebook document
with a broader object model. Our storage layer facilitates
notebook storage and retrieval. Internally it also tracks ver-
sioning of the code cells, dependencies between cells that
occur due to state sharing, and interactions between note-
books and the shell or terminal via files. Figure 1 shows the
internal data model (right) of an example notebook (left).
Juneau converts every notebook Ni into a workflow graph.
We formalize this workflow graphWFi as a directed bipartite
graph, in which certain data object nodesDi = {D1, . . . ,Dm}
are input to computational modules (in Jupyter, code cells),
Mi = {M1, . . . ,Mn}, via labeled directed edges.

Each module inMi produces output data objects (set Di),
which can be inputs to other computational stages. In Juneau
our focus is on data objects that can be represented in (pos-
sibly non-1NF) tables. This includes input files read by the
notebook, formatted text (Markdown) cells, and outputs (files,
text, images). Edges between data objects and computational
modules are labeled with the names of the program variables
associated with those objects.

2.2 Searching the Lake

The problem of finding related tables in a data lake has multi-
ple dimensions. First, there are a variety of different “signals”
for table relatedness. For instance, in some settings, we may
have shared values or keys; in others, the data may be com-
plementary and thus have no value-overlap at all. Second,

there are multiple kinds of tasks, each with different criteria
for what makes a table useful:
Augmenting training or validation data: we seek tables

with similar schemata, descriptive metadata and provenance,
and compatible values and datatypes — such that the table
can be mapped as input into the machine learning algorithm
being used. Tables that bring many new rows are preferred.
Linking data: we seek data that joins with the existing

table, meaning we need to find a small number of common
schema elements with high data overlap. Tables that bring
new fields are preferred.
Extracting machine learning features: machine learning

features are generally acquired by running code over the
contents of a table — the result resembles that of a join, in that
it adds columns to each row. There are two major differences
from the linking-data use-case: (1) the feature-extracted table
will generally derive from a table with different provenance
from the search table, (2) the feature-extracted table should
typically have a superset of the columns (and the majority
of rows) of the search table.

Data cleaning: high-ranking tables shouldmatch the schema
of the search table, and share most rows (as identified by
key) and values. The cleaned table should derive from one
with similar provenance to the search table, and generally
will have fewer null values and unique values per column.

2.3 Juneau Functionality

To support the search types described above, Juneau must
leveragemultiplemeasures for each search type, and it should
easily extend if new measures are proposed by future re-
searchers or domain experts. Our system is given a search
table S , a search type τ and relatedness function Relτ that
combines multiple measures (defined in Section 3), and an
indexed set of tables in a data lake. It seeks the k most related

Research 22: Data Lakes, Web, and Knowledge Graph SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

1953

tables. Section 4 develops (1) scalable algorithms for comput-
ing our measures, (2) a top-k engine to combine them.We pri-
oritize inexpensive, highly-selective measures to prune can-
didate tables; then compute additional measures as needed.

Of course, any search method that must compare the con-
tents of the search table against a large number of existing
tables will not scale. We not only use data sketching and pro-
filing techniques as in prior work [9, 13, 45], but in Section 5
we develop techniques for incorporating profiling algorithms
that can identify the semantics of certain columns by their
value ranges and data patterns (e.g., countries, first names).
We generalize this idea to profile tables that contain certain
combinations of fields, e.g., a table of people and their IDs.
We create an index from the profile tables to matching fields
in other tables; if a search table matches against the profile
table, it can also be transitively matched to these tables.

3 MEASURES OF TABLE RELATEDNESS

The previous section gave an overview on how different
search classes are supported by combining multiple mea-
sures. In this section, we propose basic measures of related-
ness or utility sim(S,T) between a given target table T and
our current search table S . We defer implementation to the
next section. Note that the set of potential measures for ta-
ble relatedness is nearly unbounded, because many domain-
and data modality-specific measures might be defined for
different use cases. Thus, we provide a basic set of measures
for common use cases, and the extensible Juneau framework
can incorporate additional measures. We divide our basic
metrics into measures of table overlap (at the row and column
level), useful for finding tables with schemas that augment
or join with our existing data; measures of new information
(rows or columns) that favor tables that bring more infor-
mation; and measures of provenance similarity that indicate
semantic relatedness between datasets. Finally, while data
cleaning is a vast field that often employs domain-specific
techniques, we develop simple measures to detect the kinds
of data cleaning often employed in Jupyter notebooks, which
involve filling in missing values.

3.1 Matching Rows and Columns

Our starting point is a measure of similarity or overlap be-
tween tables that are similar, but not necessarily identical,
by finding matches among sub-components (namely, rows
and columns). Intuitively, the overlap between tables may be
broken down into row- and column-level overlap. Row over-
lap captures overlapping data items (or in machine learning
parlance, instances); column overlap seeks to capture com-
monality of schema elements. Both notions must be tolerant
of small changes to schema and values.

To characterize row-level and column-level similarity be-
tween a pair of tables S and T , we introduce a relation map-
ping µ consisting of a key mapping and a schema mapping.
Intuitively, when the pairs of attributes kS , kT in the key map-
ping are equal, we have a value-based match between the
rows. Conversely, the schemamapping attributesmS ,mT cap-
ture pairs of attributes that semantically correspond (not as
part of the key). Inspired by schema matching literature [39],
we distinguish between value-based and domain-based (in
the sense of semantic types) techniques for finding relation
mappings and computing table overlap.

3.1.1 Value-based Overlap. We start with a measure the
commonality between rows in the tables, which is obtained
by finding shared values in a corresponding key mapping.

Overlap with Exact Matches. For the problem of table row
overlap, we start with a strong assumption of exact matching,
which wewill ultimately relax. Given two tables S,T , we seek
a mapping µ that relates tuples s ∈ S, t ∈ T .

Definition 1 (Key Mapping). If S and T overlap, we ex-
pect that there is at least one candidate key kS for relation S
and kT for relation T , each containing n attributes, such that
if θkS ,kT = (kS1 = kT1) ∧ . . .∧ (kSn = kTn), then we have func-
tional dependency kS → S ZθkS ,kT T and kT → S ZθkS ,kT T .

We sayθkS ,kT establishes a bijective keymappingK between
pairs kSi and kTi , for 1 ≤ i ≤ n.

Often, attributes that are not part of a candidate key are
in fact mappable between pairs of relations S and T , so the
mapping key attributes do not fully define the relationship
between pairs of tuples. Moreover, even if the keys exactly
match, the remaining attribute values may not. We thus
consider more general methods of mapping columns that do
not directly overlap in value.

3.1.2 Domain-based Overlap. Domain-based overlap cap-
tures the columns that are drawn from the same domain,
even if they do not have overlapping values. The simplest
form of domain-based overlap is to leverage similarity of
labels and compatibility of domains [39]. Another method
is to use ontologies with known instances [33]. However,
ontologies often have limited coverage, and may not capture
common patterns in the data. Therefore, we propose a more
general solution that we term data profiles.

Definition 2 (Data Profile). Suppose we are given a
particular domain d (where a domain might be, e.g., a name,
a birthday). Given a column c , we denote the data profile
of c with respect to d as Ψ(c,d), where Ψ(c,d) = {ψi (c,d)}i .
Eachψi represents a set of features indicating column c’s values
belong to domaind . Given c ,d and a group of weightsω = {ωi },
for each ψi , there exists a function дi , such that дi

(
ψi (c,d)

)
predicts the likelihood that column c has domain d . Denote

Research 22: Data Lakes, Web, and Knowledge Graph SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

1954

M(c,d) as the function that predicts column c is of domain d ,
M(c,d) = ∑

i ωiдi
(
ψi (c,d)

)
.

We can then define the domain-based mapping as follows.

Definition 3 (Domain-based Mapping). LetD = {dj } be
a set of domains. Given table S , we define a domain mapping
Γsj ,dj , where sj is in the schema of S , dj ∈ D, and we say sj
belongs to domain dj , ifM(sj ,dj) > τ , where τ is a threshold.

Our implementation (Section 4.2.2) relies on user-defined
data profile-detection functions called registered matchers,
as well as basic value-range and uniqueness checkers, as
predictors for whether given columns map to domains.

Leveraging the domain-basedmapping, we introduce schema
mapping between two tables. If we assume that the proba-
bilities are independent and that we are looking for a single
common domain between columns, then we can further de-
fine a measure of similarity between columns c and c ′ as:

MS(c, c ′) = arдmaxdM(c,d) ·M(c ′,d)
We can now find correspondences between pairs of at-

tributes (sj , tj): we assume one-to-one correspondences be-
tween attributes [39], and select pairs sj , tj in decreasing
order of similarityMS(sj , tj), only selecting each column at
most once. This yields a schema mapping:

Definition 4 (Schema Mapping). A schema mapping
ΓmS ,mT , where |mS ⊆ S | = |mT ⊆ T | = k , is a bijective
mapping between pairs of attributes sj ∈mS , tj ∈mT , 1 ≤ j ≤
k . Initially we assume that the domains of mapped attributes
sj , tj are the same, which we term direct schema mappings.

3.1.3 Relation Mapping. We then define the relation map-
ping, which will be a parameter to a lot of our similarity
measures.

Definition 5 (Relation Mapping). A relation mapping
between relations S and T , µ(S,T) is a four-tuple
(mS ,mT ,kS ,kT) such that |mS ⊆ S | = |mT ⊆ T |, |kS ⊆ mS | =
|kT ⊆ mT |, ΓmS ,mT is a schema mapping between S,T , and
kS ,kT form a one-to-one key mapping K .

The culmination of these definitions yields a measure that
can estimate the similarity between two tables:

Definition 6 (Overlapwith RelationMapping). Given
two tables S,T and a relation mapping µ = (mS ,mT ,kS ,kT)
between the tables, we define two components: row similarity,
sim

µ
row (S,T), and column similarity, simµ

col (S,T). As with [5,
13], we use Jaccard similarity for each component. First, we
consider row overlap; given that kS →mS and kT →mT :

sim
µ
row (S,T) =

|πkS (S) ∩ πkT (T)|
|πkS (S) ∪ πkT (T)|

(1)

For column similarity, we consider the overlap between the
schemata of S and T , denoted by vectors S̄, T̄ .

sim
µ
col (S,T) =

|mS |
|S̄ | + |T̄ | − |mS |

(2)

3.1.4 Relaxed Overlap Conditions. In real world datasets
that are not controlled by a DBMS, key constraints are occa-
sionally violated due to errors, data consistency issues, and
joint datasets that have not been fully de-duplicated. Thus,
exact value overlap may be too strong a constraint to find
key fields and thus identify common rows. We thus relax our
constraints to incorporate approximate key constraints, and
extend the similarity metric.

Value-based Overlap with Approximate Matches. Approxi-
mate functional dependencies have been heavily studied in
the database literature, with a focus on practical algorithms
for their discovery [6, 12, 22, 24, 42]. We leverage this work
to define a similarity measure (the algorithm used to detect
the approximate dependencies is orthogonal to our work).
If a dependency kS → S holds, then all tuples in S with

a given value of kS must be identical. However, in an ap-
proximate setting some tuples may not satisfy kS → S . We
can collect this portion of S into a subset Sn , where for each
s ∈ Sn[kS], there exist multiple tuples in Sn .

Definition 7 (Approximate Key Constraints). Given a
candidate approximate key, kS ⊆ S̄ , we define a factor γkS (S)
to measure how well kS serves as a key of S . Adapting a metric
proposed in Wang et al. [42], we measure the expected num-
ber of tuples in the table associated with each value of the
approximate key, πkS (S). Note that the factor is equal to 1 if an
exact functional dependency holds. Formally, γkS (S) is defined
as follows: ∑

v ∈πks (S)

|σks=v (S)|
|πks (S)|

=
|S |

|πks (S)|
(3)

Thus, if kS ⊆ S̄ , and γkS (S) ≈ 1, then we say kS is an approxi-
mate key of S .

Domain-based Overlap with Approximate Matches. Just as
we may consider approximate matches for values, it is also
possible to have a relaxed notion of domain overlap: namely,
in a hierarchy or lattice of different domains, column sj may
map to domain d1, column tj may map to domain d2, and the
two domains may relate to each other.

Definition 8 (Compound Domain Mapping). A com-
pound domainmapping ΓdmS ,md

, wheremS ⊆ S̄,md ⊆ D, |ms | →
|md |, is a mapping between attributes sj ∈ ms and domains
dj ∈md . If ∀j, Γdsj ,dj holds, we saymS belongs to a compound
domainmd . We can associate a domain precisionprecis(ms ,md)
to capture how preciselymd describes the domain ofms ; the
precision of the most specific domain will be 1.0, and super-
classes of this domain will have successively lower scores.

Research 22: Data Lakes, Web, and Knowledge Graph SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

1955

Definition 9 (Approximate Relation Mapping). We
define an approximate relation mapping to be a relation map-
ping µ(S,T) = (kS ,kT ,mS ,mT), with an approximation factor,
γ (S,T), based on how closely or precisely the mapped por-
tions of the relations (approximately) satisfy kS → mS and
kT →mT . Formally, γµ (S,T) is:

|πmS (S)| + |πmT (T)|
|πkS (S) ∪ πkT (T)|

(4)

We then compute the overlap defined in Definition 6, using
the approximate relation mapping.

3.2 Augmenting with New Information

Table similarity measures commonality between tables, but
in a variety of cases we also want to find tables that bring in
a substantial amount of new data instances (rows). Therefore,
we propose two metrics to measure information gain.

Definition 10 (New Row Rate). Given table S, candidate
table T , and their approximate relation mapping µ(S,T) =
(mS ,mT ,kS ,kT), we define the new row rate of T as nrr µS (T):

nrr
µ
S (T) = |πkT (T) − πkS (S)|/|πkT (T)| (5)

Definition 11 (New Column Rate). Given table S, candi-
date tableT , and their approximate relation mapping µ(S,T) =
(mS ,mT ,kS ,kT), we define the new column rate ofT asncr µS (T):

ncr
µ
S (T) = |T̄ −mT |/|T̄ | (6)

A complementary direction explored by Kumar et al. [29]
is whether joining a table to bring in additional features
notably improves a classifier’s accuracy. As future work,
we are interested in exploring whether their notion (which
considers schema constraints and VC-dimension) can be
adapted to our setting in a low-overhead way.

3.3 Measures for Shared Provenance

The above similarity measures focus on matching table con-
tent, i.e., instances and schema. However, tables may also
have similarity of purpose or role: i.e., they may be produced
by an identical or similar workflow (sequence of notebook
cells). We begin with a variable dependency graph (as is used
in source code dependency analysis), which captures the de-
pendencies among variables in the computational notebook.
We extract a subgraph for each variable as its provenance
graph, and define similarity based on the edit distance be-
tween provenance graphs.

Definition 12 (Variable Dependency Graph). A vari-
able dependency graph of a notebook is a directed acyclic graph
with labels on edges denoted as G = (V ,E, F). V represents
the vertices consisting of all variables detected in the notebook.
F represents operations (functions) that are used on the in-
put variables to generate the output variables. E(G) represents

the labeled directed edges, and for any triple ⟨u,v, l⟩ ∈ E(G),
where u,v ∈ V (G), and l ∈ F (G), it means that variable u de-
pends on variable v via operator l . Note that, table dependency
graph is generated by extracting the assignment relationships,
variables and functions from the source code of the computa-
tional notebook. To extract all of the information, we parse the
source code to an abstract syntax tree (AST).

Listing 1: Example 3.1

inFp= " t r a i n . c sv "
d f _ t r a i n =pd . r e ad_c sv (inFp)
var= " S a l e P r i c e "
da t a =pd . conca t ([d f _ t r a i n [" GrLivArea "] , d f _ t r a i n [var]])

Example 3.1. See Listing 1 and Figure 2. The nodes repre-
sent the variables detected in the source code, including inFp,
df_train, var, and data. The operators used here are func-
tions such as pd.read_csv and pd.concat. The edges consist
of all assignments in the source code. For example, data is out-
put by running pd.concat on df_train and var. Therefore,
it is connected by two edges with the same label from var,
df_train respectively.

Figure 2: Variable

dependency graph

A variable dependency graph de-
picts how a variable depends on
and affects other variables. Building
upon this, we introduce a variable
provenance graph for each variable.

Definition 13 (Variable Prove-
nance Graph). Given a variable
dependency graph G = (V ,E, F),
a variable provenance graph PG(v)
where v ∈ V is a subgraph of G, which describes all variables
that affect v and their relationships.

Definition 14 (Variable Provenance Similarity). The
provenance similarity between two variables is defined via
graph isomorphism. GivenG = (V ,E, F) andG ′ = (V ′,E ′, F ′),
a graph isomorphism fromG toG ′ is a bijective function f : E
→ E ′, s.t. ∀(u,v, l) ∈ E,∃(u ′,v ′, l ′) ∈ E ′, s.t. u ′ = f (u),v ′ =
f (v) and l = l ′. Meanwhile, ∀(u ′,v ′, l ′) ∈ E ′,∃(u,v, l) ∈ E,
s.t. u = f −1(u ′),v = f −1(v ′) and l ′ = l .
Provenance similarity between two variables va and vb ,

where va ∈ V and vb ∈ V ′, is the graph edit distance [43], the
most common measure of graph similarity, between PG(va)
and PG(vb), denoted as edt(PG(va), PG(vb)). It is the number
of edit operations in the optimal alignment that makes PG(va)
reach PG(vb). The edit operation on a graph G is an insertion
or deletion of a vertex/edge or relabeling of an edge. The costs of
different edit operations are assumed to be equal in this paper.

Provenance similarity between S andT , simp (S,T), is thus:

simp (S,T) =
1

edt
(
PG(S), PG(T)

)
+ 1

(7)

Research 22: Data Lakes, Web, and Knowledge Graph SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

1956

Search Class simµ
row (S, T) simµ

col (S, T) simp (S, T) nrr µS (T) ncr µS (T) ∆
µ
0 (S, T) simΘ(S, T)

Augmenting Training/ Validation Data N/A ++ ++ ++ N/A N/A +
Linking Tables ++ N/A N/A N/A N/A N/A +

Extracting Features ++ N/A - - N/A ++ N/A +
Alternative Data Cleaning ++ ++ + N/A N/A ++ +

Table 1: How different measures correspond to different search classes.

We show an algorithm for computing provenance similarity
in Section 4. Note that we only consider provenance for all
definitions within the current notebook, and do not extend
to imported packages or other files. As future work we will
consider code analysis across source files.

3.4 Other Measures

3.4.1 Description Similarity. The information of why and
how a table was derived is also important when consider-
ing table similarity, especially when tables have limited row
overlap. We consider the any descriptive information (meta-
data) about the source data, as well as the workflow used to
produce the data, as a part of our similarity metrics, and we
assume that they are all stored in a key-value form.

Examples of descriptive metadata are sketched in a recent
vision paper [17], and may include the problem type, e.g.,
classification, regression, clustering; the domain of the source
data, such as health care, finance, insurance; study conditions;
text about workflow; etc.

We denote the description space of table S as Θ(S). Θ(S) =
{(θi ,vi , fi)|1 ≤ i ≤ N }, where θi represents a specific type
of description, vi is the corresponding value of θi . Given an-
other table T with its configuration space Θ(T), fi measures
the similarity between vi and v ′

i , where (θi ,vi , fi) ∈ Θ(S)
and (θi ,v ′

i , fi) ∈ Θ(T).
Given table S,T and a description space, the description

similarity simΘ(S,T) is defined as follows:
N∑
i=1

wi ∗ fi (vi ,v ′
i) (8)

wherewi is theweight for a specific feature, such that
∑N

i=1wi =

1, and (θi ,vi , fi) ∈ Θ(S) and (θi ,v ′
i , fi) ∈ Θ(T).

3.4.2 Null Value Reduction. The number of null values in a
column is an important signal when looking for data cleaning
tasks, as a common cleaning operation is to fill in or impute
missing values. We define the measure as follows:

Definition 15 (Null Value Decrement). Given two ta-
bles S,T , and the relation mapping µ(S,T) = (mS ,mT ,kS ,kT),
the null value decrement ∆µ0 (S,T) is:

∆
µ
0 (S,T) =max

{
0,Null

(
πmS (S)

)
− Null

(
πmT (T)

)}
(9)

where Null(S) and Null(T) represent the number of null value
entries in S and T respectively.

3.5 Composing Measures for Search

Section 2 described four typical classes of search. We now de-
scribe how our primitive measures from above can facilitate
ranking for each search class.

3.5.1 Augmenting Training Data. Tableswith similar schema
and provenance to the search table are likely to be useful
as additional training data. Therefore, for this search class,
given µ, we need a table T ∈ Σ with high sim

µ
col (S,T) and

high simp (S,T). Meanwhile, we prefer tables that add new
rows; therefore, the table should also have a high nrr

µ
S (T).

Thus, given µ(S,T), Rel1(S,T) is defined as follows:

ω1sim
µ
col (S,T) + ω2simp (S,T) + ω3nrr

µ
S (T) (10)

3.5.2 Linking Data. Rather than looking for tables that have
high column overlap, a data scientist often needs to find
tables that augment or link to the current result. This is
requires a joinable table, where we expect one-to-many (or
in rare cases many-to-many) links between tuples.
Again, we assume the presence of a relation mapping

µ(S,T) = (mS ,mT ,kS ,kT). Here, however, we expect that
either kS → S or kT → T , i.e., we can think of kS and kT
as members of a key/foreign-key join. Therefore, in the
first case, there will be a high row overlap between T and
S ZkS ,kT T , which means simµ

row (T , S ZkS ,kT T) will be
high. In the second case, the high overlap will exist between
S and S ZkS ,kT T , which means simµ

row (S, S ZkS ,kT T) is
high. Formally, given tables S , T and a relation mapping
µ(S,T) = (mS ,mT ,kS ,kT), Rel2(S,T) is:
max

(
sim

µ
row (S, S ZθkS ,kT T), simµ

row (T , S ZθkS ,kT T)
)
(11)

3.5.3 Extracting Machine Learning Features. Feature extrac-
tion will typically produce tables that preserve their inputs’
keys and other columns, but add more columns. We look
for tables with high sim

µ
row (S,T) and high ncr

µ
S (T) or high

sim
µ
row (S,T), but with low simp (S,T). Formally, Rel3(S,T) is:

ω1sim
µ
row (S,T) + ω2ncr

µ
S (T) + ω3simp (S,T) (12)

3.5.4 Data Cleaning. Compared with the search table, the
output of data cleaning usually matches the schema and
shares most rows, but has some data-level differences. The
most typical “signal” is a reduction in null values. Therefore,
we require the table has high simµ

row (S,T), high sim
µ
col (S,T)

and high ∆
µ
0 (S,T). Since data cleaning is usually combined

with other steps, we also require the alternative data cleaning

Research 22: Data Lakes, Web, and Knowledge Graph SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

1957

steps should share common provenance, which means it also
require a high simp (S,T). Formally, given µ(S,T), Rel4(S,T)
can be defined as follows:

ω1sim
µ
row (S,T) + ω2sim

µ
col (S,T) + ω3∆

µ
0 (S,T) + ω4simp (S,T)

(13)
Summary of similaritymeasures.We summarize ourmea-
sures and their relative importance to each search class in
Table 1. Note that we always add simΘ(S,T), the description
similarity, to each measure: we consider it a strong indicator
if tables were created by the same organization, belong to
the same domain, or serve the same project.

4 QUERYING FOR RELATED TABLES

Leveraging the similarity metrics and search classes of the
previous section, we now develop algorithms for finding
related tables. We must identify the best relation mapping
between the source table S and the candidate table T (Sec-
tion 4.2) and compute components of the table relatedness
score (Section 4.3). Once we have relatedness scores, we
must compute the top-k results using effective pruning and
indexing strategies (Section 4.4). We start with an overview
of how ranked query processing (top-k search) works.

4.1 Overview of Top-k Search

The top-k query processing problem involves computing as
few results as possible to return the highest-scoring results.
This longstanding problem in query processing typically
sets a threshold on remaining answers and returns values
scoring above this [10, 23]. The challenge lies in using the
measures with the highest selectivity/cost trade-off to “drive”
the computation and prune many potential matches; then
evaluating the remaining measures to refine our ranking.
We divide our basic measures in Table 1 into two cate-

gories, based on whether they depend on finding the relation
mapping µ. Typically, detecting relation mapping is more
time-consuming than other measures, i.e., simp (S,T) and
simΘ(S,T), since the provenance graph of a table and the
metadata of the notebook or the dataset are proportionally
small. Therefore, the relationmapping is the bottleneckwhen
doing top−k search. Based on this observation, we leverage
a threshold algorithmic framework to do top−k table search,
whose idea is to leverage computationally efficient measures
to prune the candidate tables, minimizing computation of
the time-consuming parts (e.g., the relation mapping).
Ultimately, we must find a relation mapping between ta-

bles. To speed this up, we create indices to help quickly detect
a mapping for part of a table’s schema, and then if necessary,
we incrementally refine the full relation mapping detection.
Since the partial relation mapping is efficient to compute, we
can also fit this staged relation mapping strategy into our
threshold based algorithmic framework.

4.2 Detecting Relation Mappings

Most of our similarity measures require the relation mapping
as input. This requires us to detect a schema mapping at the
domain-level ΓmS ,mT , and subsequently derive a set of key
mappings θkS ,kT by looking at values within the mapped
columns. In turn, finding the schema mapping involves esti-
mating value-based overlap, then matching columns against
data profiles to detect their domains.

4.2.1 Computing Value-based Overlap. We use Jaccard simi-
larity between pairs of columns, to determine their overlap
score,MS(i, j):

MS(i, j) = |πsi (S) ∩ πtj (T)|/|πsi (S) ∪ πtj (T)| (14)

where si ∈ S̄ (S̄ is the schema for table S) and tj ∈ T̄ . Alter-
natively, we could estimate similarity using sketches or LSH
based approximation [14, 46] for scalability.

4.2.2 Computing Domain-based Overlap. Value-based over-
lap is a strong signal that columns share the same domain,
but sometimes different tables contain disjoint data values.
As described previously, ontologies [33] are one method of
determining common domains, but they are often unavail-
able or under-populated. To handle such cases, we propose
two methods to identify columns’ domains.
Registered Matchers. Leveraging an idea from schema
matching [39], we pre-define a series of matching functions
that can test if the column belongs to a specific domain. A
typical example is to validate email address by regular ex-
pression. In Juneau, we also allow users to register their
own matchers to match columns to specific domains. Our
implementation, described in Section 6, supports matchers
that check columns’ data types, unique values, value ranges,
and common patterns. This is generally through a combi-
nation of value-range checking (e.g., for zip codes), pattern
detection (e.g., for phone numbers or street addresses), and
cross-checking across a dictionary (e.g., for common names).
Data Profiles.More generally, we can develop algorithms
that do data profiling to predict whether a column belongs to
a domain, e.g., by testing for features as defined in Section 3:
example features include columns’ data types, unique values,
value ranges, and common patterns. Additionally, the outputs
of the registered matchers above form additional features.

In our initial implementation of Juneau, we use Boolean-
valued features, and then compute Jaccard similarity between
the sets of features reflected in two sets of columns. This
could be easily generalized to real-valued features.

We also generalize to look at co-occurring columns within
the same schema; e.g., we may be more confident that we
have a “last name” field if there is also a “first name” field.
Here, we use a Naïve Bayes model to score the probability of
c matching a column c ′, and the characteristics in this case

Research 22: Data Lakes, Web, and Knowledge Graph SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

1958

isψi (c) = {c∗}, where {c∗} is the set of columns in the same
table as column c . The score is computed as follows:

p
(
c |ψi (c ′)

)
∝ p(ψi (c ′)|c)

p
(
ψi (c ′)

) = ∏
c∗∈ψ (c ′) p(c∗ |c)∏
c∗∈ψi (c ′) p(c∗)

(15)

where p(c∗ |c) = n(c,c∗)
n(c) , and p(c∗) = n(c)

N , where n(c, c∗) is the
number of tables that contain both c and c∗, and n(c) refers
to the number of tables that contain c .

4.2.3 Relation Mapping. Given matching scores between
pairs of columns, we need to find the schemamapping ΓmS ,mT

between S andT . We find this schema mapping using integer
linear programming [26], much as in prior work [16]. For-
mally, we denote xi j as the binary variable indicating if si ∈ S̄
is matched to tj ∈ T̄ , according to some attribute similarity
function that may take schema or data into account [27, 39].
That is:

xi j =

{
1, if ΓmS ,mT [si] = tj

0, otherwise

Here, we assume that each attribute in S̄ can be matched to
at most one attribute in T̄ and vice versa. Thus, the objective
is to find a mapping ΓmS ,mT satisfying the constraints that
can maximize the matching score as follows:

argmaxΓ
∑
i, j

xi j MS(i, j)

s.t. xi j ∈ {0, 1}, ∀i,
∑
j

xi j ≤ 1, ∀j,
∑
i

xi j ≤ 1
(16)

Finally, we use a greedy algorithm proposed by Papadim-
itriou [35] to get the best schema mapping.

4.2.4 Detecting keys and dependencies. For a given schema
mapping, the choice of key mappings determines which rows
are mapped together, and thus it affects the relation mapping.
Our goal is to find a key mapping K = (kS ,kT) with equijoin
predicate θkS ,kT , which maximizes the table overlap.

Since table overlap includes both row and column overlap,
we denote the table overlap as:

sim
µ
β (S,T) = βsim

µ
row (S,T) + (1 − β)simµ

col (S,T) (17)

where parameter β allows us to adjust the weight on row
and column terms.

Next, we maximize simµ
β (S,T) (for some given parameter

β and schema mapping ΓmS ,mT) to find the key mapping K
between S and T . Formally,

sim
µ
β (S,T) = argmaxθ ∗kS ,kT

sim
µ
β (S,T) (18)

Unfortunately, choosing the subset of a schema mapping
as a key mapping to maximize the similarity is a variation of
the classic, NP-hard subset-selection problem. Fortunately,
the key mapping for two tables typically has a very small size,
especially for linkable tables (key-foreign key joins seldom

match on more than 2-3 keys). Therefore, we do not actually
need to explore all subset combinations of attribute pairs
from S andT , but limit the size of θkS ,kT to be a small integer
denoted as ks . Thus, the key mapping we are looking for is:

K : argmax(kS ,kT) s.t. |kS |, |kT | ≤kssim
µ
β (S,T) (19)

This optimization problem is tractable. We combine the cho-
sen ΓmS ,mT and K to form our relation mapping µ.

4.3 Estimating Provenance Similarity

Computing provenance similarity i.e., the graph edit dis-
tance between two variable provenance graphs (Section 3.3),
is NP-hard [43]. In this section, we present an approxima-
tion algorithm to efficiently estimate the provenance similar-
ity between two tables based on their variable provenance
graphs. The basic idea of our estimation is to transform a
graph structure to a multiset of star structures [43].

Star Edit Distance. To estimate the provenance similarity
between S and T , we first derive the corresponding variable
provenance graphs, PG(S) and PG(T), respectively. The key
idea of estimating the graph edit distance between PG(S)
and PG(T) is representing each graph to be a set of star
structures whose graph edit distance can be easily obtained.
Based on the edit distances between star structures of PG(S)
and PG(T), we can estimate the lower and upper bound of
their graph edit distance, a.k.a their provenance similarity. In
the following part, we first introduce the star structure and
then elaborate on how to compute the edit distance between
two star structures.

Definition 16 (Star Structure). A star structure s is a
labeled single-level, rooted tree which can be represented by
a 3-tuple sr = (r ,L, f), where r is the root vertex, L is the set
of leaves. Note that edges only exist between r and any vertex
in L, and no edge exists among vertices in L. f is the labeling
function on edges.

Given PG(T) = (V ,E, F), we can represent it with a set
of star structures, denoted as PGs (T) = {sr |r ∈ V }, where
sr = (r ,L, f) and L ⊂ E, f ⊂ F .

Definition 17 (Star Edit Distance). Given two star
structures s1 = (r1,L1, f1) and s2 = (r2,L2, f2), we denote
their star edit distance as sdt(s1, s2). Formally,

sdt(s1, s2) = | | f1 | − | f2 | | +M(f1, f2) (20)

where M(f1, f2) = max{|Ψf1 |, |Ψf2 |} − |Ψf1 ∩ Ψf2 |, and Ψf
represents the multiset of f .

Lower Bound of Edit Distance. Based on the star repre-
sentation of the variable provenance graph, we introduce
a mapping distance between two star representations, and
we leverage it to provide a lower bound on the graph edit
distance between two variable provenance graphs.

Research 22: Data Lakes, Web, and Knowledge Graph SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

1959

Definition 18 (Mapping Distance). Given two star rep-
resentations PGs (S) and PGs (T), assume that ϒ is a bijective
mapping between si ∈ PGs (S) and sj ∈ PGs (T). The distance
ζ between PGs(S) and PGs(T) is

ζ (PGs (S), PGs (T)) = minϒ
∑

si ∈PGs(S)
sdt(si , ϒ(si)) (21)

Detecting an ϒ that can minimize the mapping distance
is also a combinatorial optimization problem, which is the
same as detecting the schema mapping described in 4.2.3.
Therefore, we use the same greedy solution to find ϒ, so that
we can compute the mapping distance efficiently.

Proposition 1. Given themapping distance between PGs (S)
and PGs (T), the provenance similarity between S ,T satisfies:

ζ (PGs (S), PGs (T)) ≤ 4 · edt(PG(S), PG(T)) (22)

Proof. Let P = (p1,p2, ...,pl) be an alignment transforma-
tion from PG(S) to PG(T), such that PG(S) = h0 → h1 →
... → hl = PG(T), where hi−1 → hi indicates that hi is de-
rived from hi−1 by executing cell pi . Following Definition 13,
pi can be vertex or edge insertion or deletion, or edge rela-
beling. Let P consist of z1 edge insertions/deletions, z2 vertex
insertions/deletions, and z3 edge relabelings; then the edit
distance between PG(S) and PG(T) is z = z1 + z2 + z3. Each
edge insertion/deletion affects two vertices, increasing map-
ping distance by at most 2. , every time it happens, only
two vertices are affected, and for each vertex, it will at most
increase a cost of 2 on mapping distance between star struc-
tures PGs (S) and PGs (T). Therefore, the mapping distance
between PG(S) and PG(T) increases by at most 4z1. Given
vertex insertions/deletions, the mapping distance remains the
same. Given z3 edge relabelings, each of which affects two
vertices, the mapping distance increases by at most 2z3. Thus:

ζ (PGs (S), PGs (T)) ≤ 4 · z1 + 2 · z3

≤ 4 · edt
(
PG(S), PG(T)

) (23)

In the following computation, we will use the lower bound
of edt(PG(S), PG(T)) to estimate the provenance similarity
between two given tables S and T .

4.4 Querying for Tables

Given a source table S and the techniques of this section,
our table search algorithm seeks the top-k tables, which
maximize the relatedness score for the user’s specific class
of search. Without loss of generality, we assume that our
goal is to find the k tables with highest table relatedness.
Formally, given table S and the data lake Σ = {T1, . . . ,Tn}, we
seek top-k tables Rk = {Ti |Ti ∈ Σ, ∀Tj < Rk , Relτ (S,Ti) >
Relτ (S,Tj), |Rk | = k}.

To return the top-k tables, a strawman solution is a form
of exhaustive search: we take each table Ti ∈ Σ, find a re-
lation mapping, then compute row and column overlap as

well as the other relatedness components respectively, and
ultimately rank our matches to return the top−k tables. Note
that in the use cases we discussed in this paper, the most
expensive parts are detecting relation mappings among the
computational components.

Of course, the strawman solution is not efficient, because
(1) it repeatedly computes schema mappings and candidate
key dependencies without reusing any mappings or keys al-
ready detected, even though we may notice during indexing
tables that some of the columns probably coming from the
same domains; (2) in practice, most tables in the data lake
are not related to the search tables along all relatedness met-
rics. Therefore, it is unnecessary to compute all relatedness
components, especially the more time-consuming ones, for
each candidate table. We may be able to quickly prune some
tables from consideration.

Top-k query processing is a well-studied problem [23, 25,
30], with Fagin’s Threshold Algorithm [10] forming a strong
foundation. Building upon the insights of reusing relation
mappings and the top-k query processing literature, we use
several key ideas to prune the search space.

4.4.1 Speeding up Relation Mapping. As described in the
last section, we create a data profile for each domain, which
is either registered by the user, or detected when we store
the table. In an index, we link all of the columns to their
corresponding domains. Thereafter, we can leverage the data
profiles as a means of finding tables with columns from the
same domain. Moreover, we also have the workflows that
generated the tables in the data lake, which we can also use
to index tables.
Indexing via Data Profiles on Columns. The data profile
for each domain tests for features indicating that a column
belongs to the domain; in turn, we can use the profile as an
intermediary to other columns from this domain.We can thus
directly use data profile information to accelerate schema
mapping, without having to go through all columns from
all tables. Specifically, given table S , we create data profile
Ψ for each column s ∈ S̄ , and match Ψ to the profiles of
the domains already registered. Then, based on the matched
pairs of profiles, the system will return the union of tables
that are linked to the matched profiles, and we only consider
valid relation mappings among those tables.
Indexing Sets of Columns via a Compositional Profile.

Considering that columns from particular domains often
co-occur with certain other columns in the tables (e.g., ad-
dress and postal code, full name and birth date) — if we can
match one of them against a data profiles, the others are
also very likely to be able to be matched with other columns
in the table. Therefore, every time we search for related ta-
bles, we create an index entry mapping from a set of data
profiles on columns to the matches within the current search

Research 22: Data Lakes, Web, and Knowledge Graph SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

1960

table. As part of subsequent searches, we look for existing
tables matched to the same set of columns’ data profiles —
accelerating the problem of finding a relation mapping.
Indexing via Workflow Graph. Another dimension by
which we can index tables is through workflow steps. We en-
code each variable and each unique notebook cell as a graph
node. The consecutive cells are linked and we further link
each variable to the notebook cell it belongs to. Note that
we only keep notebook cells with unique code, therefore the
cells shared by different notebooks will become the nodes
connecting different notebooks. Then, we can index all the
tables that are derived by connected workflow steps. Index-
ing via the workflow graph can improve the detection of a
relation mapping. We can trace through the workflow to find
when two different tables actually originated from the same
source; and from this, we can determine if columns match
even if they are renamed! In future work we will explore
alternative levels of granularity, using code analysis to break
cells into smaller code blocks.

4.4.2 Staged RelationMappingDetection. As described above,
we now have three indices to detect schema mapping: the
data profile index on columns, the compositional profile
index on co-occurring sets of columns, and the workflow
graph index. In this section, we combine them using a staged
relation mapping detection algorithm.

Stage 1: Matching by data profiles. Specifically, given
table S , we try to match each column si ∈ S̄ against all
registered data profiles. If one of the domains is matched, we
continue to match additional columns sj ∈ S̄ , where i , j to
other domains, if these are connected via a compositional
index. We return the union of tables linked by those matched
domains, denoted as Σ∗.
Stage 2: Matching by workflow index. Then, for each

candidateT ∈ Σ∗, ifT and S are linked via a workflow index,
we further check if other columns can be matched. Lastly,
if there are still columns of S and columns of candidate T
that can not be matched, we will check if other columns can
be matched through the technique of detecting value-based
overlap proposed in Section 4.2.3.

4.4.3 Pruning. Staged relation mapping can help us prune
tables with minimal schema-level overlap, and reduce the
times schema mapping (a cubic algorithm) must be invoked
to detect value-based overlap. Additionally, since most tables
are unrelated, they also have low scores along all related-
ness metrics, which enables further pruning possibilities.
Note that for each table T ∈ Σ∗, if we have evidence that
Rel(S,T) will be very low-scoring, we can short-circuit prior
to searching for a full relation mapping or computing other
time-consuming metrics.

Here, we leverage two strategies to develop our thresh-
old based computational framework. First, if the relatedness
computation needs detecting relation mapping, we will start
with detecting mapping with indices. In this case, we can
obtain a partial relation mapping, denoted as ∂µ(S,T) =
(m′

S ,m
′
T ,k

′
S ,k

′
T) for each possible candidate T ∈ Σ∗. Lever-

aging partial relation mapping, we can first compute the
column overlap based metrics, i.e., simµ

row (S,T) and nrr
µ
S (T),

which we can do sorted access when doing top−k search.
Then, we can derive upper bounds for other relationmapping
related metrics based on the partial relation mapping, and
do random access when doing top-k search in a threshold
style algorithm. Specifically, the upper bounds of relation
mapping related metrics are as follows:

sim
µ
col ≤ min(|S̄ |, |T̄ |)/max(|S̄ |, |T̄ |) (24)

ncr
µ
S (T) ≤ |T̄ −m′

T |/|T̄ | (25)

and,

∆
µ
0 (S,T) ≤ max

{
0,Null(S) − Null

(
πm′

T
(T)

)}
(26)

Our second strategy is to use the related metrics that are
inexpensive to compute, to prune the number of the tables
for which we need to derive costly similarity metrics. Among
the metrics we use in this paper, the least costly to compute
are simp (S,T) and simΘ(S,T). Therefore, we can sequentially
search over the top-scoring matches to those two metrics
(“sorted access” in the Threshold Algorithm), and compute
the expensive metrics on demand (“random access” in the
Threshold Algorithm).
Approximation. Leveraging the threshold algorithm as a
framework also allows us an opportunity to use approxima-
tion. We can trade off precision for speed, by adapting the
approximate version of Fagin’s Threshold Algorithm [10].
Here, we use an early stop strategy by introducing a new
parameter α , with some value α > 1 specifying the required
level of approximation. The algorithm will then stop when
the kth biggest similarity of the tables remembered is higher
than 1

α of the threshold, such that a tableT ′ not in the top−k
set satisfies the condition that Relτ (S,T ′) ≤ α ·Relτ (S,T) for
every other table T inside the top-k set. This approximation
relaxes the threshold test of our algorithm, making it pos-
sible to return approximate answers, which is much faster
than our vanilla staged threshold algorithm.

5 SYSTEM IMPLEMENTATION

Our implementation of Juneau combines the measures of
Section 4, within amiddleware layer built between the Jupyter
Notebook system and the PostgreSQL relational DBMS (10.9)
and Neo4J (3.5.8) graph DBMS. The core of Juneau is com-
prised of approximately 5,000 lines of new code. Juneau
links into Jupyter Notebook’s ContentsManager interface

Research 22: Data Lakes, Web, and Knowledge Graph SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

1961

with PostgreSQL as its storage back end to store data and nec-
essary indices, and links into Neo4j to store the relationship
of tables, cells and notebooks.
Juneau provides two main services. The first one is ta-

ble addition and indexing, which happens whenever a new
Jupyter cell is executed. The table indexer creates a profile for
each column of the table, then runs all registered matchers
and domain detection algorithms to decide if the columns
belong to the registered domains. The table and the matched
columns will be linked to corresponding domains; new table
contents will be appended to the profile, and meanwhile, we
will also link the domains matched together via the compo-
sitional index. If none of the domains are matched, we will
register the column as a new domain and store its profiles.We
keep the top−K (in our experiment, K = 100) most-matched
domains. Then, the indexer will also parse the notebook to
generate the provenance graph of the table, and update other
provenance information in the Neo4j Graph database. Lastly,
the indexer stores the dataframe into PostgresSQL backend.
The second stage of Juneau, which hooks into Jupyter’s

client-side user interface, is searching for related tables. The
user selects a cell output table as a query, then specifies what
type of table to look for; and our table search component
retrieves the top−k related tables, according to the specified
need described in Section 2. As described in Section 4, we
use the staged threshold algorithm to do top−k search, and
take the advantage of the table registry and caching to speed
up the search process.

Periodically, we adjust the weights of our different search
metrics via a hyperparameter tuning module. Given a manu-
ally labeled set of queries, we run Bayesian Optimization [2],
a popular method for machine learning hyperparameter se-
lection. We choose hyperparameter values that maximize
our scores over the sample workload.

6 EXPERIMENTAL EVALUATION

In this section, we evaluate Juneau on real data science
workflows with their source datasets, and compare it with
several alternatives. We consider the following questions:
(1) What is the execution-time speedup provided by our
computational framework, including the threshold-based
algorithm, data profiling and indexing? (2) How is the quality
of the tables returned by our system in our proposed typical
use cases, compared with those returned by alternatives such
as keyword-based table search and LSH-based table search?

6.1 Experimental Setting and Overhead

We provide an overview of our experimental setup, including
how we obtained the data, workloads and queries, and how
we stored and indexed the tables derived from the workloads
with other necessary information.

6.1.1 Data Sets and Workloads. Our experiments use real
data science workflows downloaded from kaggle.com. We
collected 102 Jupyter Notebooks with their source data1, from
14 different Kaggle tasks and competitions. We divide these
into three different categories: Machine Learning (ML),
typically including workflow steps such as feature selection,
feature transformation (construction) and cross-validation; Ex-
ploratory Data Analysis (EDA), typically including data
cleaning, univariable study, multivariable study, hypothesis
testing, etc.; Combined which includes both exploratory
data analysis and validation of machine learning models. Ta-
ble 2 describes some of the tasks and styles of data analysis.

Table 2: Samples from experimental workload.

ID Task Category

1 Predicting Sales Price EDA
kaggle.com/c/house-prices-advanced-regression-techniques

2 Instacart Market Basket Analysis EDA
kaggle.com/c/instacart-market-basket-analysis/data

3 Sentiment Analysis on IMDB Movie Review ML
kaggle.com/renanmav/imdb-movie-review-dataset

4 Predicting Survival on Titanic Combined
kaggle.com/c/titanic

We ran all of the notebooks in our repository, stored and
indexed all variables output by each cell, if their type be-
longed to one of Pandas DataFrame, NumPy Array or List. In
Juneau, tables and indices are stored in PostgreSQL, with
provenance information captured in Neo4j. To index tables
by profile, we created 10 matchers that used regular expres-
sion pattern matching and checking against dictionaries, and
registered 59 domains as data profiles. 5 of the 10 matchers
produced features relevant to our query workload: those for
name, age, gender, country and sport; additional matchers
were for last name, first name, email, address, ssn.

Storage and Indexing Overhead. In total, our corpus in-
cludes over 5000 indexed tables, with 157k+ columns, whose
size is just under 5GB. Data profiles and indices are updated
when tables are indexed. The storage cost of data profiles is
around 11.5MB and the provenance graph for tables is around
3.6MB. Indexing time per table was approximately 0.7 sec to
index each table, with multiple indexing threads running in
parallel to support interactive-speed user interactions.
6.1.2 Queries and Performance Metrics.
We develop workloads to study query efficiency and quality.

Query answering efficiency.We divide our tables into small
and large groups, based on whether cardinality is less than
105. We randomly sample 10 tables from each group (denoted
as Q4 and Q5) at each round, issue each query, and compare
the average search time with different algorithms.

1 http://www.cis.upenn.edu/~zives/research/juneau.html

Research 22: Data Lakes, Web, and Knowledge Graph SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

1962

http://www.cis.upenn.edu/~zives/research/juneau.html

Answer quality. For each use case considered in this paper,
we choose a notebook from our repository and choose a
table from it to issue the query. Rather than using subjective
measures of quality, such as labels or rankings we provide by
hand over others’ data – we demonstrate effectiveness of our
search results on the task being performed in the notebook.
To test augmenting training data, we choose a notebook

from Task 3, and query the data in the notebook to find more
training data. The original notebook tests the precision of
the sentiment prediction, which we leverage as a baseline to
evaluate the quality of the returning tables. When the top−k
tables are returned, we inject a new line of code, replacing
the query data with the returned tables, within the original
notebook. Then we complete execution of the notebook, and
measure the new precision of the prediction it generates.
To evaluate alternative feature extraction and data clean-

ing, we choose two notebooks from Task 4 and Task 1 for
each case, respectively. Again, we query using a table (gen-
erated during feature engineering or data cleaning) from the
notebook. As with the previous task, the original notebooks
evaluate the precision of the prediction of a trained classifier.
To evaluate our search results, we inject them to the note-
book and use them to train the classifier. We compare the
new precision versus the original.

Finally, to test our detection of linkable tables, we choose
a notebook from Task 2, an EDA pipeline. We search using
a table S which was used in a join with some table T . To
evaluate the whether it makes sense to use a returned table
R in a join, we check elsewhere in the notebook to see if R
(or a table derived from it) is joined with T .

To measure overall quality, we use the mean average pre-
cision @ k (MAP@k), considering the top−k search.

6.2 Performance of Searching Tables

6.2.1 Search Efficiency. We compare the full Juneau (SJ),
which includes our threshold-based algorithm with data pro-
files and indices, against (1) brute-force search with LSH en-
sembles [46] (the parameter num_perm = 64) (L64), (2) our
threshold based algorithm without data profiles and indices
(TA), (3) TA only with data profiles (TA+P). Table 3 shows
the running times of these different approaches as we vary k
and the query sets (Q4 vsQ5), for each of our 4 search classes
described above. Brute-force search is too slow, therefore we
do not include it as a baseline. If the average running time is
too long (>2300 seconds), we leave it as NF. Due to limited
space, we omit keyword search over tables, which has very
fast, nearly constant times (10s of msec).

This experiment shows the incremental benefits of each of
our techniques. The basic TA starts by finding, in decreasing
order of the measure simp (S,T), tables, before computing
the other measures. TA+P prunes this by favoring matches
to data profiles. SJ further includes workflow indices. Note

that TA for detecting linkable data is the same as brute-force
search, since we have to detect the relation mapping first.
Across the search classes and query sets, Table 3 shows that
neither the basic TA or the LSHE sketching techniques pro-
vide interactive-level response times. Data profiles (TA + P)
provide orders-of-magnitude benefits, by efficiently detect-
ing tables with partial mappings through the domains we
detected during indexing. When Juneau can leverage work-
flow indices, this provides roughly another 1.5-6x speedup.
L64 uses LSH ensembles [46] to detect the matches be-

tween columns, or to detect a join domain and return the
corresponding linkable tables. This uses fewer features than
TA, so it is much faster, at the cost of quality, discussed in
the next section. (Note that LSHE could also be combined
with the other methods.)

In summary, data profiles and provenance indexing are
critical to speeding up relation mapping, and complement
our threshold based algorithmic framework.

6.2.2 Search Result Quality. We compare Juneau (SJ)
against the original notebook (NB), LSHE (L64, described
above) and a keyword-based search baseline as might be
provided by a search engine (KS). For the keyword-search
baseline, we treat each table as a document, and each value
as a word token. Each table is represented as a bag-of-words
vector, and we use cosine similarity to compute related-
ness. To incrementally evaluate the contributions of different
measures to quality, we distinguish between “PS” (“partial
Juneau”) which includes the row/column-similarity mea-
sures, and “full SJ” (also including notions of information
gain and provenance similarity, as appropriate for the class
of search). Figure 3 reports the impact of the returned tables
on machine learning quality, for our different search classes.
We discuss each class in sequence.

Augmenting Training Data. To evaluate the value of search
results as additional training data, we compare the original
precision of the trained classifier in the notebook (NB), ver-
sus the new precision obtained when training over the table
returned. We only showMAP@k values above 0.70 for visual
clarity. Figure 3 (a), shows that precision with results from
Juneau is significantly better than our original baseline, as
well as the alternate strategies. Even compared to PSJ, which
only looks at row and column similarity, we see that our ad-
ditional metrics greatly boost quality. To further understand
the contribution of provenance and new data rate on provid-
ing different tables, we add a comparison PS + P, which is PS
plus provenance similarity. We can observe from the figure
that including provenance similarity has already provided
some benefit compared with PS only.
Feature Extraction. Figure 3 (b) searches for tables with

extracted features. Here, L64 actually does poorly as we
increase the value of k . Keyword search and PSJ show no

Research 22: Data Lakes, Web, and Knowledge Graph SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

1963

Table 3: Average running time (seconds) of returning top−k tables when searching for related tables

top-k Augmenting Training Data Feature Extraction Alternative Data Cleaning Linking Data
Q4 L64 TA TA+P SJ L64 TA TA+P SJ L64 TA TA+P SJ L64 TA TA+P SJ
1 919.4 1017 9.776 1.481 875.3 2036 8.288 2.332 947.7 1454 5.833 3.133 22.64 2252 14.67 3.033
5 919.4 1086 9.944 3.254 875.3 2149 8.624 2.336 947.7 1461 5.999 3.145 22.64 2252 15.077 3.261
10 919.4 1106 12.17 5.105 875.3 2228 9.744 3.302 947.7 1488 7.029 4.364 22.64 2252 15.510 4.169
Q5 L64 TA TA+P SJ L64 TA TA+P SJ L64 TA TA+P SJ L64 TA TA+P SJ
1 1755 NF 23.51 5.119 1691 NF 21.30 5.188 1871 NF 20.46 4.318 127.9 NF 22.44 4.246
5 1755 NF 23.86 5.290 1691 NF 21.87 5.417 1871 NF 20.87 4.517 127.9 NF 22.51 4.343
10 1755 NF 24.15 5.532 1691 NF 23.29 5.666 1871 NF 20.95 4.892 127.9 NF 22.73 4.864

(a) Augmenting Training Data (b) Feature Extraction (c) Data Cleaning (d) Linkable Data

Figure 3: MAP@K of tables returned by different search classes

improvement over the baseline. The full suite of Juneaumea-
sures provide slightly improved results, i.e., the additional
features are beneficial to the machine learning classifier.
Data Cleaning. Figure 3 (c) shows that data cleaning

searches provide measurable but minor impacts on over-
all quality. Again the full Juneau metrics provide the best
accuracy, even compared to PSJ’s overlap-based approach.

Linkable Data. Finally, Figure 3 (d) shows quality for searches
for linkable data. Here, both KS and L64 return overlapping
content, rather than content that matches on key-foreign key
relationships and contains “complementary” data – so they
return no joinable results in the top-k . Juneau, for k = 2 and
above, provides meaningful tables to join.

7 RELATEDWORK

Data management for computational notebooks is an emerg-
ing area, with Aurum [13] focused on indexing and keyword
search, and multiple efforts [7, 28, 37] addressing versioning
and provenance tracking. Juneau builds similar infrastruc-
ture but focuses on search for related tables.
Table search over the web has been extensively studied.

WebTables [4, 5] developed techniques for parsing and ex-
tracting tables from HTML, determining schemas, and sup-
porting keyword search. WWT [38] augments lists of items
using tables from the web, a special case of unionable tables.
Fan et al. [11] used crowdsourcing and knowledge bases and
Venitis et al. [41] used class-instance information to find web
table sources for specific columns. Google Dataset Search [3]
addresses search over web tables via their metadata.

The problems of linking and querying data in situ were
considered in dataspaces [15], the Q System [40] and Bel-
hajjame et al [1]. Data Civilizer [9, 14] maintains profiles
on database tables to to discover links. Constance [19] ex-
ploits semantic mappings to mediated schemas to enable
query reformulation. Google’s Goods [20, 21] indexes tables,
supports annotations to sources, and provides faceted and
keyword search plus the ability to browse provenance links.
It uses LSH techniques to discover (and link) similar datasets.
Nargesian et al. [32] focus on discovering unionable or join-
able tables in a data lake. Our efforts are inspired by that
work, but focus on exploiting our knowledge of tables’ prove-
nance, defining different query classes and notions of table
relevance, and supporting top-k queries.

8 CONCLUSIONS AND FUTUREWORK

This paper studied the problems of searching for related
tables, for four types of tasks. We developed an extensi-
ble framework for efficient search with multiple similarity
measures, and proposed novel indices to improve top-k per-
formance. We evaluated using real Jupyter notebooks, and
showed good search result quality and efficient performance.
As future work, we hope to extend our work to handle nested
data, and other data types that are not strictly tabular.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous review-
ers for their feedback. This work was funded in part by NSF
grants III-1910108, ACI-1547360, andNIH grant 1U01EB020954.

Research 22: Data Lakes, Web, and Knowledge Graph SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

1964

REFERENCES

[1] Khalid Belhajjame, Norman W Paton, Alvaro AA Fernandes, Cornelia
Hedeler, and Suzanne M Embury. 2011. User Feedback as a First Class
Citizen in Information Integration Systems.. In CIDR. 175–183.

[2] William J. Bolosky, John R. Douceur, David Ely, and Marvin Theimer.
2000. Feasibility of a Serverless Distributed File System Deployed on
an Existing Set of Desktop PCs. In Proc. Measurement and Modeling of
Computer Systems, 2000. 34–43.

[3] Dan Brickley, Matthew Burgess, and Natasha Noy. 2019. Google
Dataset Search: Building a search engine for datasets in an open Web
ecosystem. In The World Wide Web Conference. 1365–1375.

[4] Michael Cafarella, Alon Halevy, Hongrae Lee, Jayant Madhavan, Cong
Yu, Daisy Zhe Wang, and Eugene Wu. 2018. Ten years of Webtables.
Proceedings of the VLDB Endowment 11, 12 (2018), 2140–2149.

[5] Michael J. Cafarella, Alon Y. Halevy, Daisy Zhe Wang, Eugene Wu,
and Yang Zhang. 2008. WebTables: exploring the power of tables on
the web. PVLDB 1, 1 (2008), 538–549.

[6] Loredana Caruccio, Vincenzo Deufemia, and Giuseppe Polese. 2016.
Relaxed functional dependencies — a survey of approaches. IEEE
Transactions on Knowledge and Data Engineering 28, 1 (2016), 147–165.

[7] Lucas AMC Carvalho, Regina Wang, Yolanda Gil, and Daniel Garijo.
2017. NiW: Converting Notebooks intoWorkflows to Capture Dataflow
and Provenance. In Proceedings of Workshops and Tutorials of the 9th
International Conference on Knowledge Capture (K-CAP2017).

[8] James Cheney, Laura Chiticariu, and Wang Chiew Tan. 2009. Prove-
nance in Databases: Why, How, and Where. Foundations and Trends
in Databases 1, 4 (2009), 379–474.

[9] Dong Deng, Raul Castro Fernandez, Ziawasch Abedjan, Sibo Wang,
Michael Stonebraker, Ahmed K Elmagarmid, Ihab F Ilyas, Samuel
Madden, Mourad Ouzzani, and Nan Tang. 2017. The Data Civilizer
System.. In CIDR.

[10] Ronald Fagin, Amnon Lotem, and Moni Naor. 2003. Optimal aggre-
gation algorithms for middleware. J. Comput. System Sci. 66(4) (June
2003), 614–656.

[11] Ju Fan, Meiyu Lu, Beng Chin Ooi, Wang-Chiew Tan, andMeihui Zhang.
2014. A hybrid machine-crowdsourcing system for matching web
tables. In 2014 IEEE 30th International Conference on Data Engineering.
IEEE, 976–987.

[12] Wenfei Fan, Floris Geerts, Jianzhong Li, and Ming Xiong. 2011. Dis-
covering conditional functional dependencies. IEEE Transactions on
Knowledge and Data Engineering 23, 5 (2011), 683–698.

[13] Raul Castro Fernandez, Ziawasch Abedjan, Famien Koko, Gina Yuan,
Samuel Madden, and Michael Stonebraker. 2018. Aurum: A data dis-
covery system. In 2018 IEEE 34th International Conference on Data
Engineering (ICDE). IEEE, 1001–1012.

[14] Raul Castro Fernandez, Jisoo Min, Demitri Nava, and Samuel Madden.
2019. Lazo: A Cardinality-Based Method for Coupled Estimation of
Jaccard Similarity and Containment. In 2019 IEEE 35th International
Conference on Data Engineering (ICDE). IEEE, 1190–1201.

[15] Michael Franklin, Alon Halevy, and David Maier. 2005. From databases
to dataspaces: a new abstraction for information management. SIG-
MOD Rec. 34, 4 (2005), 27–33.

[16] Avigdor Gal. 2011. Uncertain Schema Matching. Morgan and Claypool.
[17] Timnit Gebru, Jamie Morgenstern, Briana Vecchione, Jennifer Wort-

man Vaughan, Hanna Wallach, Hal Daumeé III, and Kate Crawford.
2018. Datasheets for datasets. arXiv preprint arXiv:1803.09010 (2018).

[18] Jeremy Goecks, Anton Nekrutenko, and James Taylor. 2010. Galaxy:
a comprehensive approach for supporting accessible, reproducible,
and transparent computational research in the life sciences. Genome
biology 11, 8 (2010), R86.

[19] Rihan Hai, Sandra Geisler, and Christoph Quix. 2016. Constance: An
Intelligent Data Lake System. In SIGMOD. ACM, New York, NY, USA,

2097–2100. https://doi.org/10.1145/2882903.2899389
[20] Alon Halevy, Flip Korn, Natalya F Noy, Christopher Olston, Neoklis

Polyzotis, Sudip Roy, and Steven Euijong Whang. 2016. Goods: Or-
ganizing Google’s datasets. In Proceedings of the 2016 International
Conference on Management of Data. ACM, 795–806.

[21] Alon Y Halevy, Flip Korn, Natalya Fridman Noy, Christopher Olston,
Neoklis Polyzotis, Sudip Roy, and Steven Euijong Whang. 2016. Man-
aging Google’s data lake: an overview of the Goods system. IEEE Data
Eng. Bull. 39, 3 (2016), 5–14.

[22] Yka Huhtala, Juha Kärkkäinen, Pasi Porkka, and Hannu Toivonen.
1999. TANE: An efficient algorithm for discovering functional and
approximate dependencies. The computer journal 42, 2 (1999), 100–111.

[23] Ihab F. Ilyas, Walid G. Aref, and Ahmed K. Elmagarmid. 2003. Support-
ing Top-k Join Queries in Relational Databases. In VLDB. 754–765.

[24] Ihab F Ilyas, Volker Markl, Peter Haas, Paul Brown, and Ashraf Aboul-
naga. 2004. CORDS: automatic discovery of correlations and soft
functional dependencies. In Proceedings of the 2004 ACM SIGMOD
international conference on Management of data. ACM, 647–658.

[25] Ihab F. Ilyas and Mohamed Soliman. 2011. Probabilistic Ranking Tech-
niques in Relational Databases. Morgan and Claypool.

[26] Jaewook Kim, Yun Peng, Nenad Ivezik, Junho Shin, et al. 2010.
Semantic-based Optimal XML Schema Matching: A Mathematical
Programming Approach. In The Proceedings of International Conference
on E-business, Management and Economics.

[27] Pradap Konda, Sanjib Das, AnHai Doan, Adel Ardalan, Jeffrey R Ballard,
Han Li, Fatemah Panahi, Haojun Zhang, Jeff Naughton, Shishir Prasad,
et al. 2016. Magellan: toward building entity matching management
systems over data science stacks. Proceedings of the VLDB Endowment
9, 13 (2016), 1581–1584.

[28] David Koop and Jay Patel. 2017. Dataflow notebooks: encoding and
tracking dependencies of cells. In 9th USENIX Workshop on the Theory
and Practice of Provenance (TaPP 17). USENIX Association.

[29] Arun Kumar, Jeffrey Naughton, Jignesh M. Patel, and Xiaojin Zhu.
2016. To Join or Not to Join? Thinking Twice about Joins before
Feature Selection. In Proceedings of the 2016 International Conference
on Management of Data. Association for Computing Machinery, New
York, NY, USA, 19âĂŞ34. https://doi.org/10.1145/2882903.2882952

[30] Chengkai Li, Kevin Chen-Chuan Chang, Ihab F. Ilyas, and Sumin Song.
2005. RankSQL: Query Algebra and Optimization for Relational Top-k
Queries. In SIGMOD. 131–142.

[31] Bertram Ludäscher, Ilkay Altintas, Chad Berkley, Dan Higgins, Efrat
Jaeger, Matthew Jones, Edward A. Lee, Jing Tao, and Yang Zhao. 2006.
Scientific workflow management and the Kepler system. Concurrency
and Computation: Practice and Experience (2006), 1039–1065.

[32] Fatemeh Nargesian, Erkang Zhu, Renée J Miller, Ken Q Pu, and Patri-
cia C Arocena. 2019. Data Lake Management: Challenges and Oppor-
tunities. Proceedings of the VLDB Endowment 12, 12 (2019).

[33] Fatemeh Nargesian, Erkang Zhu, Ken Q Pu, and Renée J Miller. 2018.
Table union search on open data. Proceedings of the VLDB Endowment
11, 7 (2018), 813–825.

[34] T. Oinn, M. Greenwood, M. Addis, N. Alpdemir, J. Ferris, K. Glover,
C. Goble, A. Goderis, D. Hull, D. Marvin, P. Li, P. Lord, M. Pocock, M.
Senger, R. Stevens, A. Wipat, and C. Wroe. 2006. Taverna: lessons in
creating a workflow environment for the life sciences. Concurrency
and Computation: Practice and Experience 18, 10 (2006), 1067–1100.

[35] Christos H Papadimitriou. 1981. On the complexity of integer pro-
gramming. Journal of the ACM (JACM) 28, 4 (1981), 765–768.

[36] Fernando Perez and Brian E Granger. 2015. Project Jupyter: Computa-
tional narratives as the engine of collaborative data science. Retrieved
September 11 (2015), 207.

[37] Tomas Petricek, James Geddes, and Charles Sutton. 2018. Wrattler:
Reproducible, live and polyglot notebooks. In 10th USENIXWorkshop on

Research 22: Data Lakes, Web, and Knowledge Graph SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

1965

https://doi.org/10.1145/2882903.2899389
https://doi.org/10.1145/2882903.2882952

the Theory and Practice of Provenance (TaPP 2018). USENIXAssociation.
[38] Rakesh Pimplikar and Sunita Sarawagi. 2012. Answering Table Queries

on the Web using Column Keywords. PVLDB 5, 10 (2012), 908–919.
[39] Erhard Rahm and Philip A. Bernstein. 2001. A Survey of Approaches

to Automatic Schema Matching. VLDB J. 10, 4 (2001), 334–350.
[40] Partha Pratim Talukdar, Marie Jacob, Muhammad Salman Mehmood,

Koby Crammer, Zachary G. Ives, Fernando Pereira, and Sudipto Guha.
2008. Learning to create data-integrating queries. PVLDB 1, 1 (2008),
785–796.

[41] Petros Venetis, Alon YHalevy, JayantMadhavan,Marius Pasca,Warren
Shen, Fei Wu, and Gengxin Miao. 2011. Recovering semantics of tables
on the web. (2011).

[42] Daisy ZheWang, Xin Luna Dong, Anish Das Sarma, Michael J Franklin,
and Alon Y Halevy. 2009. Functional Dependency Generation and
Applications in Pay-As-You-Go Data Integration Systems. In WebDB.

[43] Zhiping Zeng, Anthony KH Tung, Jianyong Wang, Jianhua Feng, and
Lizhu Zhou. 2009. Comparing stars: On approximating graph edit

distance. Proceedings of the VLDB Endowment 2, 1 (2009), 25–36.
[44] Yi Zhang and Zachary G. Ives. 2019. Juneau: Data Lake Management

for Jupyter. Proceedings of the VLDB Endowment 12, 7 (2019).
[45] Erkang Zhu, Dong Deng, Fatemeh Nargesian, and Renée J Miller. 2019.

JOSIE: Overlap Set Similarity Search for Finding Joinable Tables in
Data Lakes. In Proceedings of the 2019 International Conference on
Management of Data. ACM, 847–864.

[46] Erkang Zhu, Fatemeh Nargesian, Ken Q Pu, and Renée J Miller. 2016.
LSH ensemble: internet-scale domain search. Proceedings of the VLDB
Endowment 9, 12 (2016), 1185–1196.

[47] Moshé M. Zloof. 1975. Query-by-example: the invocation and defini-
tion of tables and forms. In VLDB ’75: Proceedings of the 1st International
Conference on Very Large Data Bases. 1–24.

[48] Moshé M. Zloof. 1977. Query By Example: A Data Base Language.
IBM Systems Journal 16(4) (1977), 324–343.

Research 22: Data Lakes, Web, and Knowledge Graph SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

1966

	Abstract
	1 Introduction
	2 Finding Related Tables
	2.1 Workflows, Notebooks, and Data
	2.2 Searching the Lake
	2.3 Juneau Functionality

	3 Measures of Table Relatedness
	3.1 Matching Rows and Columns
	3.2 Augmenting with New Information
	3.3 Measures for Shared Provenance
	3.4 Other Measures
	3.5 Composing Measures for Search

	4 Querying for Related Tables
	4.1 Overview of Top-k Search
	4.2 Detecting Relation Mappings
	4.3 Estimating Provenance Similarity
	4.4 Querying for Tables

	5 System Implementation
	6 Experimental Evaluation
	6.1 Experimental Setting and Overhead
	6.2 Performance of Searching Tables

	7 Related Work
	8 Conclusions and Future Work
	Acknowledgments
	References

