
NOAH: Interactive Spreadsheet Exploration with Dynamic
Hierarchical Overviews

Sajjadur Rahman∗
Megagon Labs

sajjadur@megagon.ai

Mangesh Bendre∗
VISA Research

mbendre@visa.com

Yuyang Liu
U Illinois (UIUC)

yuyangl2@illinois.edu

Shichu Zhu∗
Google LLC

shichuzhu@google.com

Zhaoyuan Su∗
UC Irvine

nick.su@uci.edu

Karrie Karahalios
U Illinois (UIUC)

kkarahal@illinois.edu

Aditya G. Parameswaran∗
UC Berkeley

adityagp@berkeley.edu

ABSTRACT

Spreadsheet systems are by far the most popular platform for data
exploration on the planet, supporting millions of rows of data.
However, exploring spreadsheets that are this large via operations
such as scrolling or issuing formulae can be overwhelming and
error-prone. Users easily lose context and suffer from cognitive and
mechanical burdens while issuing formulae on data spanning mul-
tiple screens. To address these challenges, we introduce dynamic

hierarchical overviews that are embedded alongside spreadsheets.
Users can employ this overview to explore the data at various gran-
ularities, zooming in and out of the spreadsheet. They can issue
formulae over data subsets without cumbersome scrolling or range
selection, enabling users to gain a high or low-level perspective
of the spreadsheet. An implementation of our dynamic hierarchi-
cal overview, NOAH, integrated within DataSpread, preserves
spreadsheet semantics and look and feel, while introducing such
enhancements. Our user studies demonstrate that NOAH makes it
more intuitive, easier, and faster to navigate spreadsheet data com-
pared to traditional spreadsheets like Microsoft Excel and spread-
sheet plug-ins like Pivot Table, for a variety of exploration tasks;
participants made fewer mistakes in NOAH while being faster in
completing the tasks.

PVLDB Reference Format:

Sajjadur Rahman, Mangesh Bendre, Yuyang Liu, Shichu Zhu, Zhaoyuan Su,
Karrie Karahalios, and Aditya G. Parameswaran. NOAH: Interactive
Spreadsheet Exploration with Dynamic Hierarchical Overviews. PVLDB,
14(6): 970 - 983, 2021.
doi:10.14778/3447689.3447701

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at
https://github.com/dataspread/NOAH.

∗This work began when these authors were part of the University of Illinois.
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 14, No. 6 ISSN 2150-8097.
doi:10.14778/3447689.3447701

1 INTRODUCTION

With a user base of more than one-tenth of the world’s population,
spreadsheets are by far the most popular medium for ad-hoc ex-
ploration and analysis of data [49]. Data analysts prefer to operate
on data within spreadsheets while shunning BI tools with more
advanced analytical features [13, 65]. Spreadsheets enable users
to view, structure, and present data in an intuitive tabular layout,
wherein users can map their data and tasks; this tabular layout is
essential to their popularity [57].

Exploring spreadsheet data has gotten a lot more challenging of
late: with increasingly large datasets becoming the norm, spread-
sheet systems have now raised their scalability limits. Google Sheets
now supports five million cells [26], a 12.5× increase from the pre-
vious limit of 400K cells, while Microsoft Excel now supports a
million rows [48]. Exploring data via scrolling and issuing formulae
on spreadsheets with millions of rows can be daunting for end-
users, as evidenced by a recent study [80]. Imagine scrolling through

a million rows, a hundred rows (a screenful) at a time—this would take

ten-thousand individual scrolling interactions, rendering spreadsheets

entirely unusable as a data exploration tool.

While exploring spreadsheet datasets that span multiple screens,
users often lose context [76], become overwhelmed [28], and
introduce errors [61], as detailed below:
1. Loss of overview and context. When exploring spreadsheets, users
can easily lose context of where they are and where they should go
next. The only context available is the primitive scrollbar indicating
the user’s location; users are forced to remember the layout and
structure of the spreadsheet during navigation [76].
2. Visual discontinuities. Users can view a screenful of data at a time,
introducing visual discontinuities between data being displayed.
Comparing spatially separated subsets of data requires moving
back and forth across screens. As an alternative, users tend to copy
subsets of data side-by-side [57], which is cumbersome and error-
prone.
3. Cognitive and mechanical burdens. To avoid getting lost, users
often end up taking drastic measures e.g., by sketching maps of
spreadsheets on paper, or adding landmarks to the spreadsheet in
color [76]. Issuing a formula on a data range spanning multiple
screens is problematic: users may use steering, i.e., they click and

970

https://doi.org/10.14778/3447689.3447701
https://github.com/dataspread/NOAH
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3447689.3447701

drag the mouse to select the data, or enter the data range manu-
ally having memorized it. Both approaches lead to errors due to
incorrect range selection [61].

Despite spreadsheets being around for nearly five decades, little
work has addressed the aforementioned challenges that stem from
navigating and exploring datasets spanning several screens [80].
Existing features such as Pivot Tables, named ranges, and subtotals,
partially alleviate some challenges but do not eliminate them. For
example, Pivot Tables generate a static summary in a separate
area of the spreadsheet while losing the correspondence between
the raw data and the summary; named ranges require users to
manually label ranges of data, a replacement for sketches made on
paper [76]. Other work tries to make spreadsheets more scalable [5,
68], responsive [6, 69], and expressive [2, 3, 7, 74], but none of these
papers address the usability challenges underlying spreadsheet data
exploration that occur on even modest-sized datasets. We discuss
other related work in Section 8.

To support effective exploration on spreadsheets, one approach
is to integrate an overview of the overall structure of the data along-
side the spreadsheet [28], giving an overview+detail interface [19].
Overview+detail interfaces have been applied to text editors and
maps [19] to reduce cognitive load for users during navigation by
providing themwith the big picture first, along with zooming in and
out on demand. Unfortunately, in the spreadsheet context, simply

providing a zoomed out view as an overview is unreadable and there-

fore unusable. The overview must provide a customizable summary
of the spreadsheet, while allowing users to connect the summary
to the raw spreadsheet data, with the following challenges:
Overview design and construction. Given a large spreadsheet, how
do we design an overview that captures the overall structure of the
data while providing context as users navigate the spreadsheet?
How do we ensure that this overview facilitates the search for indi-
vidual rows or groups of rows of interest? How do we construct a
coarse-grained representation of the overview by grouping spread-
sheet rows together such that this grouping applies to all data
types? How do we dynamically adapt the grouping modality so that
the overview remains interpretable on zooming in and out? How
do we allow the users to customize the grouping, if the automated
grouping is not semantically meaningful?
Overview capabilities and integration. The overviewmust be a plug-
in that enhances the capabilities of spreadsheets, as opposed to a
potentially jarring or confusing replacement for spreadsheets. How
can we seamlessly integrate our overview with current spreadsheet
tools without impacting semantics or look-and-feel? How do we
facilitate simple interactions on the overview that help users avoid
endless scrolling during exploration and error-prone steering while
issuing formulae across multiple screenfuls of data? As the user
performs various interactions, how do we ensure consistency across
both views, i.e., the overview and the raw spreadsheet?
Dynamic Hierarchical Overviews. We address the aforemen-
tioned challenges using a dynamic hierarchical overview which is
presented to the user alongside the spreadsheet. This overview is
hierarchical, in that it allows users to zoom in and zoom out on de-
mand, based on automatically constructed (yet customizable) bins.
The overview is dynamic in that the overview displays summarized
information that is automatically updated as the user performs
interactions on the spreadsheet and the overview. Moreover, ac-
tions on the overview and the spreadsheet are coordinated; users

can use whichever one is more convenient to navigate through the
data. Finally, users can avoid cumbersome steering operations for
formula computation and simply examine a summarized view as
part of this overview, which is automatically kept up-to-date as the
user zooms in and out of the sheet.
NOAH: Our Implementation. We have implemented our dy-
namic hierarchical overview in NOAH, an in-situ navigation inter-
face for overviewing and analyzing spreadsheet data holistically.
NOAH is constructed as a plugin to an existing spreadsheet tool,
DataSpread [5], an open-source spreadsheet. While NOAH’s de-
sign is not tied to DataSpread, we opted not to use other spread-
sheet tools like Google Sheets and Microsoft Excel because they
are closed-source. NOAH enables new workflows for performing
spreadsheet tasks involving scrolling and steering in a rapid and
error-free fashion.
Contributions. The primary contributions of our work are:

• We introduce the notion of dynamic hierarchical overviews

to eliminate cumbersome scrolling and steering during ex-
ploration of large spreadsheets. We identify a number of
important design considerations for such an overview, as well
as potential use cases.

• We abstract the problem of constructing our overview as one
of automatic hierarchical histogram construction, and propose
a solution for it. We also develop an interface to allow users
to customize their hierarchies.

• We identify a suite of novel interactions for our overview—and
determine how they can be synchronized with our spread-
sheet; likewise, we determine how interactions on the spread-
sheet can be synchronized with the overview. We introduce
the notion of aggregate columns to support in-situ compu-
tation at various levels of the overview hierarchy without
cumbersome steering.

• We conduct two user studies, based on several spreadsheet
exploration tasks, to evaluate the benefits and limitations of
this plugin. The first study explores NOAH impacts spread-
sheet exploration performance; compared to Excel, partic-
ipants were able to complete spreadsheet navigation tasks
more correctly (2.5× fewermistakes) and quickly (2× faster

completion time) using NOAH. The second study com-
pares participants’ spreadsheet exploration experience with
Pivot Table and NOAH; NOAH improved overall task accu-
racy by 20.78% while reducing the overall task completion
time by 28.47% relative to Pivot Table.

2 DESIGN CRITERIA AND USE CASES

We now present our design considerations for developing NOAH.
We then discuss a use-case that captures how NOAH addresses the
challenges associated with different types of exploration tasks.

2.1 Design Considerations

Our design considerations were informed by prior work in visual-
ization [72], overview+detail interfaces [19] andmultiple-coordinated
views [75].
DC1. Construct the overview in-situ.Maintaining the overview
in a separate location from the spreadsheet can lead to loss of
context; instead, having it co-located with the data can help users
make rapid glances to explore information between a bird’s-eye
view and close-up details [28].

971

a. Overview

b. Aggregate

Column c. Spreadsheet

d. History

e. Breadcrumb

g. Cells corresponding to

navigation and aggregation

attribute are highlighted

f. Overview bin

corresponding to the

visible spreadsheet data

is highlighted

Figure 1: TheNOAH interface consisting of (a) a zoomable overview and (b) an aggregate column integrated with (c) a spreadsheet. A context

bar consisting of (d) a navigation history displaying locations visited so far using the overview, and (e) a breadcrumb showing the current

navigation path (e.g., Home). (f) The user’s current focus in the spreadsheet is highlighted on the overview. (g) Columns corresponding to the

navigation attribute (city) and aggregate column (availability) are highlighted on the spreadsheet.

DC2. Ensure reduced visual discontinuity while providing

details-on-demand. To enhance visual continuity while issuing
formulae, instead of cumbersome steering, the interface should
enable interactions on the overview to perform such computations
on demand and view results [72]. The interface should maintain vi-
sual continuity as users navigate to different spreadsheet locations,
automatically recomputing formulae to reflect the new focus.
DC3. Balance the overview screen space. The limited screen
real-estate leads to a trade-off between visual discontinuity (DC2)
and clarity. A fine-grained overview improves visual clarity while
increasing discontinuity: users need to scroll through the overview
to access distant subsets of data. A coarse-grained overview de-
creases discontinuity at the cost of clarity—the overview may span
too many data subsets and appear cluttered.
DC4. Enable overview-spreadsheet coordination. Since users
view the overview and spreadsheet simultaneously, interactions on
one should be linked or reflected on the other [71, 75].
DC5. Facilitate customization of the overview.As the overview
is automatically generated, it may not reflect domain-specific con-
text [68]. For example, an overview constructed on a grading spread-
sheet by binning nearby scores may not match the instructor-
intended letter grade ranges. User-driven customization is essential.
DC6. Display navigation history. The interface should record
navigation history, allowing users to revisit previous locations [72],
while also displaying their current navigation path for context.

2.2 NOAH: Tasks and Use-cases

Table 1 captures the types of spreadsheet tasks for which NOAH en-
hances user experience, drawn from an exhaustive list by Brehmer
et al. [10]. This list encompasses a range of domain-independent
tasks on visual data representations, developed after analyzing
task classification systems in over two dozen papers, and has been
applied to several scenarios, such as developing models for visual-
ization systems [47], designing task taxonomies for cartograms [45],

and defining the scope of tasks in various domains, e.g., interactive
task authoring [24], document mining [9], multivariate network
analysis [64], and mass cytometry [30].

Table 1: Use cases where NOAH enhances exploration experience.

Purpose Use Cases
Search browse (searching based on characteristics where location is unknown/known, e.g.,

Amy tries to find Chicago listings with availability greater than 60 days).
locate/lookup (searching based on entities where location is unknown/known,
e.g., Amy wants to find all entries corresponding to a given city like Chicago).

Analyze identify (returning the characteristics of entity found during search, e.g., Amy
wants to examine Chicago listings to assess typical availabilities of listings in
Chicago).
compare (returning characteristics of multiple entities, e.g., Amywants to compare
listing patterns in Boston to that of Chicago).
summarize (returning characteristics of several entities, e.g., Amy wants to gain
an understanding of overall rental patterns across cities)

Produce generate/record (generation or recording of new information, e.g., Amy is-
sues an aggregate formula to generate summary availability statistics across cities)

Usage Scenario. Amy, a journalist, is exploring the Inside Airbnb
dataset [20], a spreadsheet dataset of all the Airbnb listings across
US cities with ≈ 100𝑘 records and 15 attributes. This dataset was
created to investigate whether certain listings in Airbnb are illegally
run as hotel businesses, while avoiding taxes; any listing available
for rent for more than 60 days a year is considered to be operated
as a hotel [36]. Given that this is the first time she’s examining this
dataset, Amy wants to first gain a bird’s eye view of the data. With-
out NOAH, Amy would have had to use a Pivot Table to construct
a summary. However, since this summary is disconnected from the
underlying data and in a separate area of the spreadsheet, it is hard
for Amy to map the summary statistics to the raw data to obtain
further details about listings from any given city—she would have
to switch back and forth. With NOAH, she organizes by city—with
NOAH providing an automatically constructed high-level hierar-
chical overview of cities (Figure 1a). She then uses this overview
to start exploration, understanding which cities are present, and
roughly how many listings does each city have. The overview
consists of sorted non-overlapping bins containing one or more
cities. She can click on any bin and the corresponding data will
be displayed at the top of her screen, essentially zooming into the

972

overview via an an operation akin to OLAP drill-down [27]. For
example, as shown in Figure 1c, clicking on the Ashville-Boston bin
displays the Ashville listings (locate).

Next, say Amy wants to analyze one of the larger cities to un-
derstand the overall renting pattern (summarize). She decides to
focus on Boston, her hometown, and wants to find out how many
listings in Boston violate the “rent availability > 60 days” condition
(identify). In a typical spreadsheet, Amy needs to manually steer
and then select the Boston listings as input to a COUNTIF formula
that counts the number of rows that satisfy the above-mentioned
condition. Using NOAH, she can zoom into the Ashville-Boston

bin (Figure 2a and 2b) and then issue a COUNTIF operation on the
overview. The result is displayed as an aggregate column along-
side the overview (Figure 1b), much like aggregation results in
cross tabs [27], or aggregates in GROUP BY queries. With the raw
data presented side-by-side, she can also dive into other attributes
of the listings operating as hotels to see if there are any other
identifying characteristics (identify). As she uses the overview to
navigate to other cities, e.g., Chicago, and compare the rent avail-
ability (compare), NOAH ensures coordination and automatically
updates the aggregate column results corresponding to that city
(Chicago). In traditional spreadsheets, she would have to reissue
the steering operation for each city being compared from scratch,
which is cumbersome.

Finally, as Amy navigates the data, her navigation history (Fig-
ure 1d), i.e., recently visited cities, and current navigation path
(Figure 1e), is kept up-to-date, allowing her to maintain context dur-
ing navigation. She can revisit any previously visited cities (lookup)
by simply clicking on the relevant path in the navigation history.
Maintaining the navigation history in traditional spreadsheets can
be tedious as she has to manually create named-ranges.

3 DYNAMIC HIERARCHICAL OVERVIEWS

We now explain the design of dynamic hierarchical overviews as
part of NOAH, the underlying algorithm for overview construction,
and extensions to the design.

3.1 Overview Design

Spreadsheets often have one or more tabular regions containing
structured data [5], interspersed with formulae—each tabular region
essentially corresponds to an (ordered) relation. Our overview can
be constructed on any of these regions on-demand. The overview
is constructed in-situ (DC1), next to the spreadsheet, sorted and
organized by an attribute of this region called the navigation at-

tribute, selected by the user. (Sorting is a commonly used operation
within spreadsheets.) Any attribute type that can be ordered can
be a navigation attribute, e.g., text, numbers. The overview is con-
structed at multiple granularities hierarchically. Each granularity is
divided into non-overlapping groups of data called bins. As shown
in Figure 2d, our overview of the Airbnb data on the navigation at-
tribute “city” has four bins at the highest (coarsest) granularity level.
Figure 2a depicts the first four bins, the first of which is Ashville-
Boston. Each bin contains summary information regarding the data
subset/region it spans, e.g., starting row and ending row number,
and the total number of rows the region spans. Each bin displays
an overview of the next (finer) granularity (if any) with embedded
bar charts. For example, in Figure 2d, the topmost bin (Ash-Bos)
spans three cities (Ashville, Austin, Boston), each of which is a bin

in the next (finer) granularity. Correspondingly, Figure 2a shows
three horizontal bar charts for the first Ash-Bos bin, one for each
bin in the next granularity. Since the third bin from the top (LA)
spans only one city, no bar chart is embedded. Users can perform
different operations on the bins, e.g., clicking to pan and zooming
in/out. NOAH also supports other interactions e.g., customization
and aggregation, discussed later.

3.1.1 Overview Spreadsheet Coordination. NOAH supports co-
ordination between the dynamic hierarchical overview and the
corresponding spreadsheet (DC4), i.e., interactions on the overview
may be reflected on the spreadsheet and vice-versa. One example
of this coordination is indicating the navigation attribute on the
spreadsheet using color (lime green column in Figure 1c) as user
constructs the overview. However, not all overview interactions are
coupled with the spreadsheet and vice versa. The coupling depends
on the current focus—to ensure consistency between the overview and

the spreadsheet, any interaction on either interface that changes the

current focus must be reflected on the other interface. We show vari-
ous examples of coupled and decoupled interactions in Section 3.3,
e.g., clicking, semantic zooming, and aggregate column creation.
We explain the implementation details of NOAH-DataSpread co-
ordination in Section 4.

3.1.2 The Rationale for Binning. Overviews within popular inter-
faces are often designed as a spatially partitioned collection of
thumbnails on the left of the standard detailed view, similar to Mi-
crosoft Power Point or Adobe Reader. To strike a balance between
the objectives of visual discontinuity and clarity (DC3), we instead
designed an overview that abstracts the data at varying levels of
detail, in a hierarchical or multi-granularity fashion. Presenting
information at multiple granularities makes visual representations
more perceptually scalable and less cluttered [22]. Thus, this hi-
erarchical overview provides an alternative to the conventional
spatially partitioned single-granularity representation of the data
space, e.g., in Power Point, by allowing users to control the scale at
which the overview should be displayed [19]. Users can resize the
overview to control the spreadsheet data that remains visible.

The data structure underlying the overview is a histogram con-
structed on the values in the navigation attribute column. We de-
scribe the formal problem in the next section. Histograms result
from binned aggregation—consecutive records or rows are grouped
into bins (or groups), where each bin represents a group of rows and
is associated with a COUNT aggregate, capturing the number of rows
that fall in that group. Unlike a traditional GROUP BY where each dis-
tinct value is a separate group, here, multiple consecutive distinct
values can form a group. In addition to providing high level (e.g.,
densities) and low level (e.g., outlier) details, binned aggregation
techniques enable a multi-granularity visual representation of data
by varying the bin size and have therefore been used in interactive
visualization of large datasets, e.g., in imMens [42]. An additional
benefit of a binned overview for spreadsheets is a decrease in vi-
sual discontinuity during navigation. As users are able to view an
overview that fits in the computer screen, they can quickly navigate
the data—the bins act as landmarks in the overview, enabling users
to skip irrelevant bins and quickly navigate to the desired subset of
data. We now discuss how the overview is constructed.

973

3.2 Overview Construction

A dynamic hierarchical overview is constructed on a given tabular
region within a spreadsheet. We discuss extensions to support
multiple tabular regions in Section 3.5. Since current spreadsheet
systems only support a fewmillion rows, the overview construction
is performed in-memory and is extremely fast.

3.2.1 Problem formulation. Suppose we have a tabular region 𝑇
with 𝑛 rows, with a set of columnsA. We assume𝑇 is static for now,
and consider edits in Section 3.5. When the user requests a dynamic
hierarchical overview on 𝑇 , they designate a special navigation
attribute (column) 𝐴 ∈ A. The tabular region 𝑇 is then sorted by
this attribute; any attribute can be sorted this way and can lead
to a meaningful overview, including text, numbers, and dates. We
can also support navigation across multiple attributes; we discuss
this extension later on. Across rows in 𝑇 , the values taken on by
𝐴 are 𝑣1 ≤ 𝑣2 ≤ . . . ≤ 𝑣𝑛 : i.e., 𝑣𝑖 is the value of 𝐴 in the 𝑖th row. In
the usage scenario explained earlier, 𝑣𝑖 corresponds to city names
across rows, which can be ordered lexicographically. We now focus
on generating the first level of our dynamic hierarchical overview
as an approximately equi-depth histogram on column 𝐴; we extend
this technique to a hierarchy in Section 3.2.3. First, a histogram can
be defined as follows.

Definition 1 (Histogram). A 𝑘-histogram on values 𝑣1 ≤ 𝑣2 ≤
. . . ≤ 𝑣𝑛 of 𝐴 is defined by split points 𝑠0 = −∞ < 𝑠1 < 𝑠2 < . . . <

𝑠𝑘−1 < 𝑠𝑘 = ∞ such that all 𝑣𝑖 where 𝑠 𝑗−1 < 𝑣𝑖 ≤ 𝑠 𝑗 are said to be

assigned to the 𝑗 th bin of the histogram, 𝐵 𝑗 .

Thus, a 𝑘-histogram partitions 𝑣𝑖 into 𝑘 bins 𝐵1, . . . , 𝐵𝑘 . We indi-
cate the size of the bin 𝐵𝑖 , |𝐵𝑖 | = 𝑏𝑖 to be the number of records
assigned to that bin. Here, we are partitioning the rows of our
spreadsheet into 𝑘 coarse-grained bins to be displayed as part of
our overview. Intuitively, we want these bins to be balanced, such
that each bin has the same number of 𝑣𝑖 (and therefore records)
assigned to it. One way to ensure that is via equi-depth histograms.
Equi-depth histograms are commonly used for summarizing sta-
tistical properties of data, with applications in query optimization
and approximate query processing [32], distribution fitting in data
streams [55], and interactive scrolling on large spreadsheets [69].
We define an equi-depth histogram constructed on 𝐴 as follows:

Definition 2 (Eqi-Depth Histogram). A 𝑘-histogram is said

to be an equi-depth histogram if 𝑏 𝑗 =
𝑛
𝑘
,∀𝑗 ∈ [1, 𝑘].

If the values 𝑣𝑖 are all distinct, it is easy to find an exact equi-depth
histogram (modulo rounding errors). However, it is more typical
that 𝐴 has repeated values among the 𝑣𝑖 . For example, there are
multiple listings per city in the Airbnb dataset. In such a scenario, it
is unlikely that we will find split points 𝑠𝑖 corresponding to an equi-
depth histogram.We therefore introduce the problem of discovering
of an approximately equi-depth histogram. We denote 𝑏 = 𝑛

𝑘
to be

the expected size of each bin 𝐵 𝑗 if we could construct an equi-depth
histogram. Here, we want each 𝑏𝑖 to be as close to 𝑏 as possible.

Problem 1 (Approximately Eqi-Depth Histogram). Given a

tabular region 𝑇 , a spreadsheet navigation attribute 𝐴, and the num-

ber of bins 𝑘 , return a 𝑘-histogram with split points 𝑠1, 𝑠2, . . . , 𝑠𝑘−1
yielding bins 𝐵1, 𝐵2, . . . , 𝐵𝑘 such that max𝑗 |𝑏 𝑗 − 𝑏 | is minimized.

Thus, we want to ensure that the maximum distance of any 𝑏𝑖
from 𝑏 is minimized.

3.2.2 Dynamic Programming Algorithm. To solve Problem 1, we
can use a dynamic programming algorithm. One approach would
be to try to come up with the best way to bin values 𝑣1, . . . , 𝑣𝑖 ,
for 𝑖 ∈ [1, 𝑛] into 𝑗 bins, for 𝑗 ∈ [1, 𝑘] via a recurrence relation
expressed using sub-problems. However, many of these binnings
would not lead to a valid histogram, since multiple consecutive
𝑣𝑖 that have the same value may be spread across two or more
bins, giving us no valid split points as is mandated by Definition 1.
So instead, we operate on the distinct values across the 𝑣𝑖 , we let
these be 𝑢1 < 𝑢2 . . . < 𝑢𝑚 . We let 𝑐𝑖 be the cardinality of 𝑢𝑖 , i.e.,
the number of 𝑣 𝑗 such that 𝑣 𝑗 = 𝑢𝑖 . Then, we have the following
recurrence relation, for all 𝑖 ∈ [0,𝑚], 𝑗 ∈ [0, 𝑘]

𝐻 (𝑖, 𝑗) =
{
0, if 𝑖 = 0 or 𝑗 = 0 or 𝑖 < 𝑗

min
1≤𝑑≤𝑖

max(𝐻 (𝑖 − 𝑑, 𝑗 − 1), |∑𝑙=𝑖
𝑙=𝑖−𝑑+1 𝑐𝑙 − 𝑏 |), otherwise

At a high level 𝐻 (𝑖, 𝑗) encodes the best way to partition the first 𝑖
distinct values of 𝑣 , i.e., 𝑢1, . . . , 𝑢𝑖 , across 𝑗 bins. While computing
𝐻 , we can also record the split points, allowing us to reconstruct
the histogram. For example, for 𝐻 (2, 2) the possible split points are
𝑑 ∈ {1, 2}. The utility of 𝐻 (1, 1) (when 𝑑 = 1) and 𝐻 (0, 1) (when
𝑑 = 2) are already known. We choose the split point that yields
a new bin—constructed from the remaining unique values (𝑐𝑙)—
whose size is closest to the expected equi-depth bin size (𝑏). The
complexity of this algorithm is 𝑂 (𝑚2𝑘).

In NOAH, we adopt a simple “best effort” greedy algorithm to
construct this approximately equi-depth histogram in 𝑂 (𝑚). We
consider the distinct values𝑢𝑖 in increasing order, one at a time, and
keep greedily adding bins, one at a time, until we have assembled
enough 𝑢𝑖 to justify adding a new bin. Formally, say we have added
𝑖 − 1 bins so far, using distinct values up to and including 𝑢 𝑗−1:
that is, all rows with 𝑣𝑖 ≤ 𝑢 𝑗−1 have been assigned to a bin. We
construct the 𝑖th bin using values 𝑢 𝑗 , 𝑢 𝑗+1, ..., until we hit the cutoff
that

∑𝑖
𝑙=1 𝑏𝑙 − 𝑖 · 𝑏 > 0. Once we pass this cutoff, this means that

we have surpassed the average size 𝑏 for the first 𝑖 bins, and the
remaining 𝑢 𝑗 must be assigned to bins 𝑖 + 1, 𝑖 + 2, . . . onwards.

3.2.3 Extending to a Hierarchy. Our dynamic hierarchical overview
is constructed on-demand top-down (see Figure 2d). At the start, we
only compute the highest level (𝑙 = 1) of the overview consisting
of an approximate equi-depth histogram with 𝑘 bins; these bins
are displayed. If the user drills down or zooms into into any of
these 𝑘 bins (using actions that we will discuss in Section 3.3), say
bin 𝐵𝑖 , we initiate a further subdivision of the records assigned to
𝐵𝑖 into 𝑘 bins once again via approximate equi-depth histogram
construction. Doing so for each of the 𝑘 bins at level 𝑙 = 1 gives
us 𝑘 new 𝑘-histograms at level 𝑙 = 2. In this manner, conceptually,
we have a tree of fanout 𝑘 constructed on-demand as the user
explores the tabular region. Note that if the number of distinct
values associated with a bin 𝐵𝑖 ,𝑚, is less than 𝑘 , then we display
fewer than 𝑘 bins on drilling into 𝐵𝑖—each such bin will correspond
to a single distinct value. While we construct our hierarchy lazily,
we materialize the split points and row numbers for any nodes (i.e.,
bins) in the hierarchy that have been visited in the past.

Note that our hierarchical overview has parallels to B+-trees
in that our hierarchy has a fixed 𝑘-way fanout. There are several
key differences, however. First, our hierarchy need not be fully
balanced, unlike B+-trees, especially when certain distinct values
have high cardinalities. Bins containing those values may have

974

Figure 2: Navigational operations. (a) The overview at the highest

level of granularity. (b) A zoomed in view of theAshville-Boston bin.

(c) As the user clicks on the Boston bin, the Boston listings are dis-

played on the sheet. TheBoston bin is highlighted in gray to indicate

user’s current focus. (d) Conceptualizing the hierarchical overview.

fewer than 𝑘 children. Moreover, to guarantee efficient retrieval
and maintenance, B+-trees impose a constraint on the number
of keys per internal node which cannot be violated; we have no
such restriction. Furthermore, users can customize the bins which
may result in the constraint on the number of keys being violated.
Finally, our goal with an approximate equi-depth histogram was
to ensure a near-equal subdivision of records, making it easier for
human consumption, instead of efficient access.

3.3 Operations and Interactions

We now discuss the operations and interactions that can be per-
formed on the overview.

3.3.1 Clicking and Semantic Zooming. Clicking a bin is an example
of an interaction that is coupled between the spreadsheet and the
overview (see Section 3.1.1). When a user clicks on a specific bin,
NOAH displays the corresponding spreadsheet data. Users can use
this operation to jump to a specific spreadsheet location using the
overview without having to scroll endlessly. For example, in Fig-
ure 2b, as the user clicks on the Boston bin, the data corresponding
to Boston is displayed (Figure 2c). Conversely, as the user scrolls up
on the spreadsheet, both Austin and Boston listings appear in the
screen. As the current focus on the spreadsheet changes, both the
Austin and Boston overview bins are highlighted (see Figure 2d).

Users can zoom into a bin (and thereby descending to a lower
level of the hierarchy) to view more fine-grained information or
zoom out to view more coarse-grained information, via what is
known as semantic zooming [62]. The zooming operation is de-
coupled—when a user zooms into a bin already in the user’s current
focus, the spreadsheet view does not change. For example, in Fig-
ure 2a, from the bin Ashville-Boston when the user zooms in to
the next level, NOAH displays the bins Ashville, Austin, and Boston

(Figure 2b); here, the spreadsheet view stays the same. If the user
zooms out of the current granularity, again NOAH displays the
bins Ashville-Boston, Chicago-Denver, and others. The zoom out
operation is also decoupled—when a user zooms out, the overview

displays a coarser granularity view of the user’s current focus. As
explained in Section 3.2.2, users can only zoom into any bin that
contains multiple unique values. For example, in Figure 2d, at level
2, each bin corresponds to one city. Users can only click on those
bins to bring that data into view, and cannot zoom in further.

3.3.2 Overview Customization. As NOAH constructs the hierarchi-
cal overview automatically, the overview binning may not capture
domain-specific context or user needs. NOAH enables users to
customize this organization (DC5). At any granularity, users can
merge multiple consecutive bins into a single bin, or split a bin into
multiple bins. Say the user wants to compare summary statistics of
Boston and Chicago. In the current organization these two cities are
in two different bins (see Figure 3a). Using bin customization, the
user can merge the two bins Ashville-Boston and Chicago-Denver

to create a new bin Ashville-Denver. Users can then zoom into this
bin and compare summary statistics of the cities in the same view.
The interactions for splitting a bin depend on the data type. If the
navigation attribute is textual, any bin can be split into as many
bins as the number of distinct values that bin contains. If numeric,
users can split the bin into an arbitrary number of bins.

3.4 Aggregate Columns

Users can issue spreadsheet formulae directly on the overview
to compute aggregates for the data in each bin. This feature al-
lows users to not have to perform cumbersome steering to issue
formulae—with the formulae having been declared once as part
of the overview, and dynamically updated as users traverse the
hierarchy. The results are displayed as an aggregate column (see
Figure 1b). This operation is similar to GROUP BY queries where user
can select one or more aggregates to apply on measure attributes,
such as SUM, COUNT, or AVERAGE. However, unlike GROUP BY queries
where each group corresponds to one distinct value 𝑢𝑖 , in NOAH,
several consecutive distinct values may form a group depending
on the overview granularity. For example, the top two results in
the aggregate column (denoted with a blue bar) in Figure 3a cor-
respond to multiple cities each as a group while the bottom result
corresponds to a single city, LA.

3.4.1 On demand Column Creation. Creating an aggregate column
is equivalent to selecting subsets of data on the sheet, i.e., steering,
and then executing a formula on this subset. Users simply select
the formula from a drop-down menu, and provide the necessary
formula parameters to a form. Users can issue several formulae
simultaneously, each creating a new aggregate column. The aggre-
gate column can employ any statistical or mathematical formulae
that operate over a range of data. When the user issues a formula
on the overview, the spreadsheet column corresponding to the
aggregate column is highlighted in grayish orange (see Figure 1c)—
another example of coupled interaction. When a user zooms into
a bin for the first time, the overview is updated and the aggregate
column is computed. The aggregates across the hierarchy are remi-
niscent of drill-downs or roll-ups in data cubes [27]; here, we are
drilling down/rolling up on automatically grouped values of a given
attribute rather than across multiple attributes.

3.4.2 Multi-perspective Result Representation. Users can view the
results either as raw values (see Figure 1b) or as charts (see Figure 3),
and can toggle between the two representations. Raw values are dis-
played along with a colored value bar, whose length is proportional

975

Zoom In

Zoom Out

(a)

(b) (c)

Merge

Figure 3: (a) Chart view of the aggregate column. (b) New bin cre-

ated by merging the top two bins. (c) Zooming into the new bin.

to the corresponding aggregate (see Figure 1b), permitting visual
comparison across bins. The chart representation varies depend-
ing on the formula category: a) summary (e.g., min, max, average),
b) frequency (e.g., mode, large, small), c) conditional (e.g., countif,
sumif), d) spread (e.g., var, stdev), and e) others (e.g., sum, count). All
other categories except for the others category can be represented
by charts. The chart representations are designed based on existing
best practices [44, 78], which are encoded as rules in NOAH. We
discuss the design choices in detail in the technical report [66].

3.4.3 Constructing the Aggregate Column. The aggregate column
is kept in sync with the bins as users zoom in and out. The aggre-
gate column entries are materialized alongside the corresponding
histogram bin, ensuring interactivity as user performs ad-hoc navi-
gation via clicking or zooming. The user can also use the context
bar to explore previously visited overview bins (DC6), comprising
two components: a) a breadcrumb displaying the current naviga-
tion path (see Figure 1e), and b) a navigation history maintaining
a list of recently visited bins (see Figure 1d). As the user explores
previously visited bins using these two features, the corresponding
aggregate column results that were previously materialized are
displayed, providing interactive response times. Even when visiting
a bin for the first time, constructing the aggregate column simply
requires a single scan over the sorted data, which is fairly efficient.

3.5 Extensions

We now discuss how our techniques can be extended to address a
wider range of scenarios than those discussed previously.
Multiple Tabular Regions. In practice, spreadsheets can have
multiple tables, as well as formulae and text interspersed. In such
cases, NOAH can support exploration for each tabular region in-
dependently via a corresponding hierarchical overview, supported
via an overall map-like overview for users to select which tabular
region they want to explore in detail. We can leverage existing work
on spreadsheet table detection and structure identification [4, 14–
17, 21] to identify such regions to construct this overall map.
Overview Maintenance. Spreadsheet users often perform vari-
ous edit operations, e.g., updating values, adding/removing rows or
columns. So far, we assumed our data to be read-only, but we can
extend our techniques to support edits. When edits are performed
to a cell pertaining to the aggregate column, the materialized results
for that column need to be updated. We simply perform incremental

view-maintenance-style delta updates to the corresponding bin at
the lowest level of the hierarchy with materialized aggregates for
the updated aggregate column, and percolate the same changes up
the hierarchy. This update can be done in time proportional to the
height of the hierarchical overview. Likewise, when cell-level edits
are performed to the navigation attribute, the hierarchy needs to
be updated. Since the tabular region is meant to be in sorted order
of the navigation attribute, we will move the updated row to its
new position in the sheet (which can be handled in 𝑂 (log𝑛) using
positional indexes [5], discussed more in the next section); we then
need to update the number of records in each materialized bin that
may be impacted by this change. The latter requires two traversals
up the hierarchy one starting from where the record was (decre-
menting counts), and one where it was moved to (incrementing
counts). For cell-level edits, we do not recompute the binning or
hierarchy construction, nor do we update the split points—since
such a drastic change may be more jarring than useful for the end-
user. There are certain corner cases that we need to handle more
delicately, such as when a cell-level edit results in a distinct value
within the navigation attribute being removed entirely, or when
a new distinct value is introduced (see our technical report [66]
for details.) Row additions and deletions are handled similarly to
cell-level updates. For large-scale changes (e.g., a large fraction of
the rows are moved or deleted), we can default to recomputing the
overview from scratch.
Multiple Navigation Attributes.Our hierarchy can be construct-
ed for multiple attributes (e.g., explore the Airbnb data by city and
neighborhood). One approach would be to consider the values of
the two attributes to be treated together as a pair, sorted by the
first attribute first, and then the second. There is one small wrinkle
in that some of the histograms may not be interpretable if they
subdivide based on both attributes—so we additionally make the
restriction that a histogram is only constructed on one of two
attributes at a time. This restriction has the effect of having the
higher levels of the hierarchy based on the first attribute, and lower
levels based on the second attribute. This is similar to how indexes
on combinations of attributes, e.g., B+-tree, are organized.
Supporting Dynamic Crossfiltering. Currently, the charts dis-
played in an aggregate column are non-interactive (see Figure 3),
i.e., users cannot interact with the charts to visually filter relevant
or interesting data points within the spreadsheet. Such linked selec-
tion is similar to crossfilter [54, 79] where one action may generate
hundreds of filter operations per second. As discussed in Section 3.1,
each bin in the NOAH overview maintains the start and end row
index of the spreadsheet data corresponding to that bin. Therefore,
NOAH can quickly scan the relevant row ranges in memory and
filter out the relevant cells.

4 SYSTEM ARCHITECTURE

We have integrated NOAH with DataSpread [5], a web-based
spreadsheet, as a plug-in (see Figure 4). The NOAH client is re-
sponsible for capturing user interactions on the overview (see Sec-
tion 3.3), and for rendering the overview. Given a user interaction,
the NOAH request processor issues a request to the back-end NOAH
controller which propagates the request to the appropriate manager.
The hierarchy and aggregation managers are responsible for the
creation and maintenance of the hierarchy and aggregate column(s),
respectively. The NOAH back-end materializes the hierarchy and

976

CLIENT

Sheet Controller

DATASPREAD BACKEND

User
Action

NOAH BACKEND

Formula Engine

NOAH Controller Hierachy
Manager

SERVER

Scroll Issue formulae

Steer

Sheet Request Processor

NOAH Request
Processor

Click

Create Overview

Customize

Aggregate

View History

Zoom

Navigation and
Synchronizat ion

Manager

Aggregation
Manager

Posit ional Index

Spreadsheet Data

Hierarchy Aggregates

History

Menu Actions

Figure 4: System architecture.

aggregation results. The navigation and synchronization manager

coordinates with the DataSpread sheet controller to update the
spreadsheet view based on the user’s interactions on the overview.
Conversely, the sheet controller notifies the navigation and synchro-

nization manager to update the current overview context based on
user’s interaction on the spreadsheet.
Integration with DataSpread. DataSpread also has front-end
and back-end components, tracking user actions and displaying the
sheet, and performing computation and retrieving data on demand,
respectively. DataSpread uses positional indexes [5], an index-
ing structure that allows for positional access (i.e., retrieving data
by row number) and updates (i.e., adding/deleting rows), both in
(log𝑛). The NOAH back-end leverages the positional index and for-
mula engine to construct the hierarchical overview and aggregate
column(s), respectively. For a given navigation attribute, e.g., “city”,
when the data is first sorted by this attribute, the positional index is
updated by DataSpread to reflect the new ordering. NOAH lever-
ages this index to retrieve the entire collection of (row id, attribute

value) pairs to construct an approximately equi-depth histogram
(discussed in Section 3.2.2) on the attribute values. As each attribute
value is associated with a row id, the bins in the overview can be
mapped to a sequence of row ids. When users click on a bin, NOAH
uses this mapping to display the corresponding spreadsheet rows.
NOAH can also be potentially integrated with systems like Excel
and Google Sheets, since these systems all support access to cells
by position, as is needed for formula computation. We discuss this
integration further in our technical report [66].

5 STUDY 1: NOAH VS. SPREADSHEET TOOLS

We now present the design of a user study aimed at understand-
ing the impact of our dynamic hierarchical overview while per-
forming navigation and computation on spreadsheet data. Existing
spreadsheet systems do not employ specific plug-ins for exploration.
Since there is no equivalent system for comparison, we studied
how participants’ spreadsheet exploration experience vary with
the presence or absence of such a plug-in. That is, we compared a
NOAH-integrated spreadsheet system with a popular spreadsheet
system, Microsoft Excel, across various tasks. These tasks were
representative of the use cases presented in Table 1. Our study
was designed to explore the following questions derived from our
design considerations in Section 2.1: a) how does a dynamic hier-
archical overview like NOAH impact the efficiency of spreadsheet

data exploration? and b) how do the various components of NOAH
impact users’ spreadsheet exploration experiences?
Study Design and Participants. The two systems used in the
study were: Microsoft Excel, and NOAH integrated as a plug-in
within DataSpread [5] (henceforth, referred to as NOAH). We
recruited 20 participants (11 female, 9 male) via a university email
newsletter. To ensure that prior experience with spreadsheets didn’t
affect the performance of participants during the quiz phase, we
only recruited participants who rated their experience with Excel
to be greater than four on a scale of one (no expertise at all) to
five (very experienced) while signing up for the study. All of the
participants were familiar with the basic mathematical and statis-
tical functions supported by Excel. Participants were free to use
any Excel capabilities, including subtotals, Pivot Tables, and named
ranges that partially address some of the data exploration concerns
in conventional spreadsheets. The study consisted of three phases:
(a) an introductory phase to help participants familiarize themselves
with NOAH, (b) a quiz phase where the participants used both the
systems to perform targeted tasks on two different datasets, and
(c) a semi-structured interview and surveys to collect qualitative
feedback regarding the quiz phase.
Datasets.We used two datasets—birdstrikes [79] and airbnb [20].
These datasets were chosen for their understandability to a general
audience. The birdstrikes dataset records instances of birds hitting
aeroplanes in different US states. The dataset has 10,868 records
and 14 attributes (eight categorical, one spatial region, one tem-
poral, four numeric). The airbnb dataset has a similar number of
attributes—15 attributes; six categorical, two spatial, one temporal,
and six numeric). However, the airbnb dataset is larger than the
birdstrikes dataset. As we alternated the datasets and systems be-
tween consecutive participants, we wanted to maintain consistency
of datasets. So, to ensure parity and that the dataset size would not
impact the performance with a specific system, we created a sample
of the original airbnb dataset with 10,925 records, by uniformly
sampling 10% of the records from each city.
Table 2: Quiz tasks for airbnb dataset. The task purposes and use

cases correspond toTable 1. DC=design consideration (in Section 2).

Category Question (Q), Purpose (P), Use case (U)
steer Q: Organize the data by City. How many listings in Chicago

were available more than 60 days (availability > 60)? [DC2, DC3],
P: Search→Analyze, U: lookup→identify

find Q: How many listings in the currently visible spreadsheet window
have availability > 60? [DC1, DC4], P: Search, U: browse

steer Q: How many listings in Santa Cruz were available more than
60 days (availability > 60)?, [DC2, DC3]
P: Search→Analyze, U: lookup→identify

compare (2) Q: Which of the following two cities has a higher number of listings
with availability > 60: (a) Chicago, (b) Santa Cruz? [DC2, DC6],
P: Analyze, U: compare

compare (𝑁) Q: Find the city with the most listings with availability > 60. [DC2],
P: Analyze→Search, U: summarize→locate

customize Q: Organize the data by availability. How many listings that are rented as
“Entire Home” are available between 46 to 157 days? [DC5],
P: Analyze→Search→Produce, U: generate→summarize→lookup

Quiz Phase Tasks. For each dataset, we designed six tasks across
five categories: steer (two tasks), find (one task), compare (2) (one
task), compare (𝑁) (one task), and customize (one task). These tasks
encompass all the use cases underlying the Search, Analyze, and Pro-
duce purposes: lookup/locate, identify, browse, compare, summarize,
and generate, from Table 1. These tasks were selected to mimic a
typical spreadsheet exploration workflow and are representative
of the most frequently issued spreadsheet operations [8, 39]. The
tasks were presented in the same order as shown in Table 2 for

977

Steer Identif
y
Comp

are…(2)
Comp

are…(N)
Custo

mize
0

50

100

150

200

250

300

350

Ti
m
e…

(s
ec
)

NOAH
Excel

Steer Identif
y
Comp

are…(2)
Comp

are…(N)
Custo

mize
0
50
100
150
200
250
300
350
400
450

Ti
m
e…

(s
ec
)

NOAH
Excel

(a) birdstrikes (b) airbnb

Figure 5: Submission times per category. Submission times are

much smaller for NOAH on average compared to Excel.

the birdstrikes dataset. The tasks for the Airbnb dataset mimic a
scenario similar to the example in the usage scenario section.
Evaluation.We evaluated the accuracy and completion time for
all of the tasks. We combined these measures with findings from a
qualitative survey, interview, and screen/audio recording data to
provide insights that can be corroborated across multiple sources.
Moreover, we analyzed the survey responses to quantify the usabil-
ity of both systems. We then measured the statistical significance
of the comparisons between the two systems.
Limitations. The participant pool of the study only partially rep-
resented the demographics of the general spreadsheet audience. A
larger participant pool with a range of skill-sets and backgrounds
that better represents the spreadsheet user population would have
provided more generality. Moreover, we compared NOAH inte-
grated within DataSpread with Excel instead of DataSpread.
Since DataSpread lacks many functionalities available in systems
like Excel, we opted to compare against Excel. While using two
different spreadsheet systems is a potential limitation, we combined
our quantitative analysis with qualitative survey, interview, and
screen/audio recording data to provide justifiable inferences that
can be explained with multiple data sources. Future studies may
compare against DataSpread, once it is more feature complete.

6 STUDY 1: RESULTS AND TAKEAWAYS

In this section, we analyze the quantitative and qualitative data col-
lected during the quiz and interview phases to address our research
questions. Additional details and statistical significance test results
can be found in our extended technical report [66].

6.1 Task Performance

In Figure 5a and 5b, we show the distribution of submission times of
participants for the five task categories, for birdstrikes and airbnb
respectively. For all task categories, participants’ submission times

usingNOAHwere lower than Excel on average. Moreover, 19 out of 20
participants completed at least four tasks in less time using NOAH.
In Figure 6a and 6b, we show the percentage of correct submissions
per task category, for birdstrikes and airbnb, respectively. For all
tasks except for the fourth, compare (2), for which the accuracy
was the same for both tools, participants attained higher accuracy
with NOAH compared to Excel. We further evaluated the statistical
significance of the completion time and accuracy. For all tasks
except customize, the submission time gains with NOAH were
statistically significant. However, the improvement in accuracy was
significant for the steer task only.

Both results suggest that the capabilities offered by NOAHmade
spreadsheet exploration faster while also improving task accuracy.

Steer Identif
y
Comp

are…(2)
Comp

are…(N)
Custo

mize
0

20

40

60

80

100

120

A
cc
ur
ac
y…

(%
) NOAH Excel

Steer Identif
y
Comp

are…(2)
Comp

are…(N)
Custo

mize
0

20

40

60

80

100

120

A
cc
ur
ac
y…

(%
) NOAH Excel

(a) birdstrikes (b) airbnb

Figure 6: Per category accuracy indicates higher accuracy of task

completion in NOAH compared to Excel.

However, participants’ task submissions with NOAH were not com-
pletely error free (Figure 6). Moreover, the submission times for
compare (𝑁) and customize tasks with NOAH were comparatively
higher than other task categories. Next, we explore the pros and
cons of NOAH’s features based on participant feedback and our
analysis of the video recordings of the study sessions.
Participant preferences. Our analysis of the survey results re-
vealed that participants preferred NOAH to Excel. On a scale of 1 to
7 (7 highest), participants found NOAH to be easier to use (5.88), a
faster means for navigation (6.03), and easier to comprehend (5.60)
than Excel (rated 4.33, 4.22, and 4.48, respectively). We discuss the
results in detail in the technical report [66].

6.2 Qualitative Feedback

Wenow assess various components ofNOAH impacted participants’
navigation performance. We also discuss the benefits (indicated
with -) and limitations (indicated with ,).

6.2.1 Dynamic Hierarchical Overview. The hierarchical overview
prevented participants from being overwhelmed during exploration.
Personalizing the overview enabled participants to define their
own grouping of the data, resulting in a more meaningful overview
presentation. However, some of the newer interactions had a steeper
learning curve.
- Exploring large datasets. The hierarchical overview aided ex-
ploration of large spreadsheet datasets. Participants found it difficult
to perform various navigation tasks in Excel, especially on oper-
ations that required perusing data across multiple screens. With
NOAH, participants avoided endless scrolling via clicking and se-
mantically zooming on the hierarchical overview. One participant
(𝑃11) commented—“Excel can get overwhelming if you have a lot

of data in it and sometimes with that data, finding things can be

difficult”. Participants (𝑁 = 6) mentioned that they would prefer to
explore large datasets with NOAH.
- Binning and customization as filtering alternatives. Bin
customization enabled participants to personalize the overview
based on their specific needs: “I did like the fact that it lets you take

a data sheet and, in some way, containerize the stuff you care and the

stuff you don’t care about (𝑃16).” Participants (𝑁 = 14) preferred
the feature to Excel’s filtering feature when working with numeric
data. Our analysis of the video recordings revealed that for the
birdstrikes dataset in Excel, the customize task involved filtering
out certain values from a total of 451 unique values. This manual
filtering led to a significant delay in task completion, compared to
the bin customization feature in NOAH.
, Steeper learning curve. Unfamiliarity with the customization
interactions in NOAH contributed to a higher completion time for

978

the customize task compared to other tasks. The unfamiliarity led
to some participants (𝑁 = 5) preferring Excel over NOAH for this
task—“Since I’m not used to spreadsheet data being presented that

way, it took a little bit of getting used to” (𝑃11).
, Exploring categorical data. While participants generally ap-
preciated the hierarchical representation of the overview for nu-
meric data, six participants stated that they would have preferred a
flat overview for categorical data, where each bin corresponds to
one item: “I would prefer it start with all the bins split, and then I can

merge them as I want (𝑃13).”

6.2.2 Aggregate Column. While the aggregate column feature en-
abled in-situ steering free computation and eliminated errors for
steer tasks, comparing the results of bins across multiple granulari-
ties introduced visual discontinuity.
- Easier and more accurate formula computation. Partici-
pants found scrolling and steering in Excel to be cumbersome while
issuing formulae—“The one thing with Excel is I always try to go to

the bottom of the data and type in the formula, and with something

really long like this, the scrolling is a little bit cumbersome” (𝑃4). Mul-
tiple participants (𝑁 = 13) found it easier to issue formulae with the
aggregate column feature in NOAH. However, the accuracies and
submission times for the steer tasks in Excel varied significantly
across datasets (see Figure 5 and 6). All of the 14 inaccurate submis-
sions with Excel involved steering an incorrect spreadsheet region;
11 of the inaccurate submissions were with the airbnb dataset. 𝑃12
commented: “With NOAH, you don’t have to highlight every number

versus Excel where you actually have to select everything.” For the
steer task with the birdstrikes (airbnb) dataset, participants were
asked to count the number of cells with value 1 (> 60, respectively)
in a given column. Analysis of screen recordings revealed that, for
Excel, with birdstrikes, several participants used the autosum fea-
ture instead of the COUNTIF formula to quickly count the 1’s in the
binary-valued column. Participants avoiding data steering resulted
in fewer errors. However, for the airbnb dataset, participants could
not use a similar shortcut and had to manually steer the data.
, Visual discontinuity during comparisons. For the task com-
pare (𝑁), participants had to perform 𝑁 comparisons in the ag-
gregate column. However, the comparison among 𝑁 bins resulted
in increased visual discontinuity causing some (𝑁 = 4 out of 20)
incorrect submissions. In Excel, the experience was worse, as the
participants had to perform 𝑁 separate steering tasks resulting in
higher submission times of the the compare (𝑁) tasks compared to
compare (2) tasks (see Figure 5). In addition, the accuracies (𝑁 = 13
accurate) of the compare (𝑁) task in Excel were lower.

6.2.3 History, Context, and Coordination. The context bar enabled
participants to revisit aggregation results of previously explored
bins without having to reissue the aggregate column operation. The
coordination between the overview and spreadsheet further helped
participants relate the aggregate column results with the raw data.
-History helps avoid repeated interactions. For the task com-
pare (2), all of the participants used the context bar in NOAH to
navigate to a bin previously visited for the first steer task. As the bin
currently being displayed was changed, the aggregate column was
automatically updated to display values corresponding to that bin,
enabling participants to view the aggregates instantly without hav-
ing to reissue the operation. However, as Excel did not preserve any
navigation history, participants had to re-execute the first steering

operation. Therefore, the submission times for compare (2) tasks
were faster in NOAH compared to Excel.
- Overview-spreadsheet coordination helps relate interac-

tions on the overview with the raw data. The coordination be-
tween the hierarchical overview and spreadsheet in NOAH enabled
users to quickly relate their interactions on the overview with the
raw spreadsheet data. For example, for the find task, participants
had to find all the cells within the spreadsheet that satisfied a condi-
tion corresponding to the preceding steer task. To do so, they had to
either perform conditional formatting to highlight relevant cells or
skim through all the cells in the current window in Excel, resulting
in higher completion times. In NOAH, participants benefited from
having visual cues via automatically colored cells, helping them
relate the aggregate column with the raw data—“In Excel, you have

to add your own condition for formatting. But you have to build that

(conditional formatting) every time you need to ask a question. NOAH

at least (has) something pre-built in, and you can easily count” (𝑃5).

7 STUDY 2: NOAH VS. PIVOT TABLE

The previous study investigates the impact of integrating an overview
with spreadsheet systems. We now present another study aimed at
characterizing the benefits and limitations of a dynamic hierarchi-
cal overview like NOAH compared to Pivot Table, an OLAP-style
overview feature available in popular spreadsheet systems. Simi-
lar to NOAH, Pivot Table complements spreadsheets, providing a
non-hierarchical (flat) overview of the data in a separate area of the
spreadsheet while enabling aggregation operations as an alternative
to issuing formulae. We opted against comparingNOAHwith other
BI tools such as Tableau [73] as such tools are not integrated within
existing spreadsheet systems. We further discuss the differences in
goals between spreadsheets systems and BI tools in Section 8.

7.1 Study Design and Participants

The study was designed to answer the following question: How does

the integration of an interactive hierarchical overview like NOAH

impact the usability and efficacy of spreadsheet data exploration

compared to non-interactive flat overviews like Pivot Table?

We conducted the study remotely via the Zoom video commu-
nication tool with 16 participants (3 female, 13 male). The two
systems used in the study were: the Pivot Table feature within
Google Sheets, and NOAH integrated within DataSpread. As we
conducted the study remotely, using Google Sheets ensured the
consistency of spreadsheet systems across participants with various
operating systems. Due to the parity between and similar findings
from the two datasets used in the prior study, we selected only one
dataset, airbnb, for this study while creating two task sets 𝐴 and 𝐵.
Set 𝐴 tasks were the same as the previous study. Set 𝐵 tasks were
similar to the set 𝐴 tasks, but the names of the cities were different.
We alternated the order of the tools between consecutive partici-
pants while keeping the order of the question sets fixed: tasks in
set 𝐴 were assigned to the first tool; tasks in set 𝐵 were assigned to
the second tool. This setting enabled us to obtain more data points
(eight) for each set (= {𝐴, 𝐵}) and tool (= {NOAH, Pivot Table}) com-
bination. Before performing the tasks of each set, participants first
watched a video tutorial of the tool and then used the correspond-
ing tool on a separate dataset [59] to familiarize themselves with
its features. For NOAH we reused the video tutorial from the prior
study. For Pivot Table, we provided a video tutorial that covered

979

steer find* compare
…(2)
compare

…(N)+customiz
e*

0

50

100

150

200

250

300

Ti
m
e…

(s
ec
)

NOAH Pivot…Table

steer find* compare
…(2)
compare

…(N)customiz
e

0

20

40

60

80

100

A
cc
ur
ac
y…

(%
)

NOAH Pivot…Table

steer* find*
compare

…(2)*
compare

…(N)+customiz
e*

0
10
20
30
40
50
60
70
80
90

P
re
fe
re
nc
e…

(%
)

NOAH Pivot…Table Both

(a) Submission Time (b) Accuracy (b) Participant Preference

Figure 7: Study results (∗ denotes statistically significant improvements forNOAH (𝛼 = 5%) relative to Pivot Table and + denotes the opposite).

all of its crucial features like adding rows, columns, aggregation
functions, and filters. We then conducted an interview and survey
to collect participant’s qualitative feedback regarding the tools. We
evaluated the accuracy and completion time for the tasks.

7.2 Key Findings

We now analyze the quantitative and qualitative data collected
during the quiz, interview, and survey phases.
Overall Task Performance. As depicted in Figure 7a and 7b, NOAH
helped participants achieve higher accuracy and less time overall

than Pivot Table, and, in particular, for three out of the five tasks.
Participants’ performance for the compare (2) task was similar for
both tools. To complete the compare (𝑁) task that required com-
paring summaries of multiple bins (cities), participants took more
time with NOAH than Pivot Table. We explain the reason behind
the higher latency with NOAH later. On average, with NOAH par-
ticipants achieved an accuracy of 96.88%—20.78% more than Pivot
Table—in about 28.47% less time. While it is easier to explore a Pivot
Table for low cardinality attributes, as the cardinality increases, it
becomes difficult to mentally assimilate the overview. The hierar-
chical overview NOAH makes the information more perceptually
scalable. We discuss the benefits and limitations of the tools next.
Benefits of NOAH Over Pivot Table. Participants provided more ac-
curate responses in less time for NOAH were steer, find, and cus-
tomize tasks. Figure 7c depicts the % of participants that preferred
NOAH, Pivot Table, or both for each task. As depicted in the figure,
participants’ preferences are correlated with their accuracy and
completion times: most participants preferred the (a) ease of issu-

ing formulae and viewing results for the steer tasks, (b) coordinated

interactions when looking up related spreadsheet data for the find

task, and (c) perceptually scalable and customizable overview when

exploring high cardinality values for the customize task.

- Ease of issuing formula and viewing summaries. For steer
tasks, participants found it easier to issue formulae using aggregate
columns in NOAH and then locate the desired results by exploring
the overview bins.NOAH prompts the user to provide the necessary
parameters based on the formula chosen in the aggregate column
menu. Pivot Table required a user to determine and interpret various
parameters such as rows, columns, values, aggregate functions, and
filters. Some of the parameters like columns were often not required
for the task at hand making it cumbersome.
- Easier navigation with coupled interactions. For the find
task, in particular, participants preferred the coordination between
the overview and spreadsheet in NOAH—participants clicked on

the corresponding bin, e.g., Chicago, to jump to the relevant data in
the spreadsheet. Moreover, the auto-highlighting feature in NOAH
enabled participants to quickly identify rows that satisfied the con-
dition in the formula. Unlike NOAH, Pivot Table lacks coordination
with the spreadsheet. Therefore, participants had to tediously scroll
through the spreadsheet to find the desired data and then manually
verify which rows satisfied the filtering condition.
-Perceptual scalabilitywith large data. For the customize task,
using NOAH, participants were able to visually inspect the bins and
identify which bins required customization, to obtain the desired
range. The corresponding Pivot Table spannedmultiple pages due to
365 unique values in the availability column—to get an overview of
the summary, participants had to tediously scroll through the Pivot
Table resulting in visual discontinuity similar to vanilla spread-
sheets and contributing to higher delay.
Limitations of NOAH Compared to Pivot Tables. The limitations of
NOAH were related to comparing multiple bins and the unfamiliar-
ity with new interactions like bin customization.
, Cumbersome Exploration with Categorical Data. When
working with categorical data, the hierarchical overview of NOAH
contributed to higher latency and lower accuracy for the com-
pare (𝑁) task. The task performance was slightly better withNOAH
when comparing only two categories for the compare (2) task. The
hierarchy introduced visual discontinuity—as all the cities were not
visible in a single screen, participants found it difficult to compare
the summaries. For the compare (𝑁) task, participants had to first
transform the hierarchical overview into a flat overview using a bin
customization option called “split all” and then manually compare
all the cities. This added step, along with the manual comparison,
contributed to the higher latency. Pivot Table’s flat overview pre-
sentation, on the other hand, eliminated the need for any additional
customization. Participants (𝑁 = 10) mentioned that such a flat
overview was desirable for exploring categorical data—“With Pivot

Table it was easier to view all the results in the same table. [With]

NOAH, I had to split all the bins [cities] and then compare. I would

have preferred everything [all the cities] automatically split.” (𝑃4).
, Unfamiliarity of Operations. Some participants (𝑁 = 5) pre-
ferred Pivot Table due its simplicity in result presentation for cate-
gorical data. Participants (𝑁 = 4) also mentioned that Pivot Table
operations were more relatable to spreadsheets and that the learn-
ing curve in NOAH was slightly steeper. For example, Pivot Table
can be sorted by the summaries, similar to how a spreadsheet is
sorted. However, NOAH provides bin customization as the only
overview organization operation and interactions like merging and
splitting bins were different from spreadsheet semantics.

980

Settings Where Each Tool is Preferable. When asked in which sce-
narios participants might prefer one tool over another, multiple
participants (𝑁 = 7) mentioned that NOAH is preferable when the
dataset is large or unknown. Similarly, multiple participants (𝑁 = 9)
suggested Pivot Table is more suitable for working with known
datasets with predefined tasks. Participants (𝑁 = 6) also mentioned
that NOAH can be useful for exploratory analysis of spreadsheet
data—“For a dataset [that] I haven not looked at before, I would prefer
NOAH to get an intuitive sense of data” (𝑃6). Overall, participants
(𝑁 = 13) preferred the visual representation of the NOAH overview
over Pivot Table as it captured the overall data distribution via
histograms—“[I] like the histogram that NOAH generates. The visual

cues were helpful in exploring and comparing the results” (𝑃16).
Takeaways. The findings above indicate that NOAH presently
works best for open-ended tasks or initial exploration, while Pivot
Table works best for settings that are more constrained, e.g., when
comparing a small number of categorical values directly. Future
versions ofNOAH can provide the “best of both worlds” by allowing
a single button to toggle between the flat (as in Pivot Table) and
hierarchical views, especially for categorical data. Providing the
users the ability to specify the binning criteria via UDFs is another
possible extension. For example, users can plug-in an agglomerative
clustering algorithm to construct a hierarchial overview. Similar
to Pivot Table, we can provide support for additional operations
like sort, filter, and find, on the overview. The bin customization
operations, i.e., bin splitting and merging, can be made more sim-
ilar to how spreadsheet cells are split or merged—in Excel, these
operations are direct and only require a single click.

8 RELATED WORK

We discuss work that study interface limitations while exploring
data, both inside and outside the context of spreadsheets.
Exploration in Popular Spreadsheet Systems. Excel users can
manually create references to a spreadsheet region using named

ranges [70] and later, click on a named range to navigate to the
referred region. However, the onus is on the user to create these
ranges. The Pivot Table [77] and SUBTOTAL [52] features allow users
to view summary results. We have already compared NOAH with
Pivot Table in Section 7. The SUBTOTAL function, embeds summaries
with the raw data. For datasets with many unique values, this
summary view introduces visual discontinuity during exploration,
similar to a Pivot Table. Google Sheets Explore [25] summarizes
spreadsheet data with auto-generated charts, but doesn’t address
the challenges related to scrolling and steering.
Enhancing Spreadsheet Scalability. Recent work has shown
that users experience spreadsheets crashing and freezing even on
millions of rows [43]. Some systems [5, 11, 68], support large spread-
sheets beyond main-memory limitations, by using scalable persis-
tent or cloud storage, or approximation. Other work has targeted
making present-day spreadsheets more interactive [6, 67]. Our work
is complementary—it instead targets users’ perceptual challenges
in exploring present-day spreadsheet that support fewer than a mil-
lion rows. That said, NOAH can potentially be extended to support
overviews on datasets that go beyond current spreadsheet limits
using standard AQP approaches. Other work has targeted trying
to make spreadsheets more expressive [2, 3, 7], more robust [4, 29],
and more interactive feature-rich [18, 35, 41, 58, 63].

TabularData Summarization. Systems likeOracle Service Cloud
Analytics [60] and SSRS [51] can group tabular data into high-
level summaries, while supporting drill down capabilities. How-
ever, users are required to import the data to a database to use
these features. Unlike NOAH, these summaries lack embedded vi-
sual cues (e.g., histograms, cell auto-highlights), a feature which
many study participants identified as a positive. BI tools such as
Tableau [73], Power BI [50], Metabase [46], and Keshif [79] all pro-
vide visual summaries of tabular data. Both tabular [51, 60] and
visual [46, 50, 73, 79] summaries require users to import the data
to a different system. Therefore, these overviews lack coordination
with the actual spreadsheet—much like Pivot Tables, these sum-
maries are not dynamically linked to nor are co-located with the
spreadsheet. As a result, users lose the ability to directly manipulate
raw data, derive new data, and issue formulae for free-form analysis.
Therefore, the goals of spreadsheets differ from the tabular data
summarization tools in two ways: a) facilitating direct manipulation
of raw data in-situ and b) enabling arbitrary derivation of new data
and summaries using various operations involving navigation, e.g.,
issuing formulae. NOAH, being a plug-in to spreadsheets, provides
a unified interface that upholds both these goals while enhancing
navigational capabilities for spreadsheet users.
Database Usability. There has been a lot of recent interest over
the past decade in making databases and data exploration systems
more usable [33]. A number of papers have targeted more intuitive
and interactive specification interfaces for databases [1, 31, 34, 40,
56]. Other work has targeted query suggestion, wherein queries
used by others are used for recommendations [12, 23, 37, 38, 53].

9 CONCLUSION

We proposed a dynamic hierarchical overview tomake spreadsheets
more effective at supporting the exploration of large datasets that
are increasingly the norm. We operationalized our design in NOAH,
a spreadsheet navigation plug-in.NOAH employs an approximately
equi-depth histogram construction strategy to compute an overview
on demand. Using NOAH, users were able to see a bird’s eye view
of the data, with the ability to scroll or seek additional details on de-
mand, as well as employ dynamic aggregation in-situ, eliminating
cumbersome steering. Quantitatively, we found thatNOAH sped up
spreadsheet navigation without compromising accuracy. Qualita-
tively, study participants identified NOAH as positively impacting
their experience while overviewing, navigating, and performing
computation on large datasets. Moreover, participants foundNOAH
to be more suitable than Pivot Tables for exploring large and un-
known datasets with many unique values. Finally, we identified
several enhancements toNOAHwhile discussing how the proposed
overview plug-in can be integrated into existing spreadsheet tools.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their valuable feedback. We
also thank Nathan Zhang for help in conducting the second user
study and subsequent data collection. We acknowledge support
from grants IIS-1940759 and IIS-1940757 awarded by the National
Science Foundation, and funds from the Alfred P. Sloan Foundation,
Facebook, Adobe, Toyota Research Institute, Google, and the Siebel
Energy Institute. The content is solely the responsibility of the
authors and does not necessarily represent the official views of the
funding agencies and organizations.

981

REFERENCES

[1] Azza Abouzied, Joseph Hellerstein, and Avi Silberschatz. 2012. DataPlay: interac-
tive tweaking and example-driven correction of graphical database queries. In
Proceedings of the 25th annual ACM symposium on User interface software and

technology. ACM, 207–218.
[2] Eirik Bakke, David Karger, and Rob Miller. 2011. A spreadsheet-based user

interface for managing plural relationships in structured data. In Proceedings of

the SIGCHI conference on human factors in computing systems. ACM, 2541–2550.
[3] Eirik Bakke and David R Karger. 2016. Expressive query construction through

direct manipulation of nested relational results. In Proceedings of the 2016 Inter-

national Conference on Management of Data. ACM, 1377–1392.
[4] Daniel W Barowy, Sumit Gulwani, Ted Hart, and Benjamin Zorn. 2015. FlashRe-

late: extracting relational data from semi-structured spreadsheets using examples.
ACM SIGPLAN Notices 50, 6 (2015), 218–228.

[5] Mangesh Bendre, Vipul Venkataraman, Xinyan Zhou, Kevin Chang, and Aditya
Parameswaran. 2018. Towards a holistic integration of spreadsheets with
databases: A scalable storage engine for presentational data management. In 2018

IEEE 34th International Conference on Data Engineering (ICDE). IEEE, 113–124.
[6] Mangesh Bendre, Tana Wattanawaroon, Kelly Mack, Kevin Chang, and Aditya

Parameswaran. 2019. Anti-freeze for large and complex spreadsheets: Asynchro-
nous formula computation. In Proceedings of the 2019 International Conference on

Management of Data. 1277–1294.
[7] Mangesh Bendre, Tana Wattanawaroon, Sajjadur Rahman, Kelly Mack, Yuyang

Liu, Shichu Zhu, Yu Lu, Ping-Jing Yang, Xinyan Zhou, Kevin Chen-Chuan Chang,
Karrie Karahalios, and Aditya G. Parameswaran. 2019. Faster, Higher, Stronger:
Redesigning Spreadsheets for Scale. In 35th IEEE International Conference on Data

Engineering, ICDE 2019, Macao, China, April 8-11, 2019. 1972–1975.
[8] David A Bradbard, Charles Alvis, and Richard Morris. 2014. Spreadsheet usage by

management accountants: An exploratory study. Journal of Accounting Education
32, 4 (2014), 24–30.

[9] Matthew Brehmer, Stephen Ingram, Jonathan Stray, and Tamara Munzner. 2014.
Overview: The design, adoption, and analysis of a visual document mining tool
for investigative journalists. IEEE transactions on visualization and computer

graphics 20, 12 (2014), 2271–2280.
[10] Matthew Brehmer and Tamara Munzner. 2013. A multi-level typology of abstract

visualization tasks. IEEE transactions on visualization and computer graphics 19,
12 (2013), 2376–2385.

[11] Mihai Budiu, Parikshit Gopalan, Lalith Suresh, Udi Wieder, Han Kruiger, and Mar-
cos K Aguilera. 2019. Hillview: A trillion-cell spreadsheet for big data. Proceedings
of the VLDB Endowment 12, 11 (2019), 1442–1457.

[12] Ugur Cetintemel, Mitch Cherniack, Justin DeBrabant, Yanlei Diao, Kyriaki Dimi-
triadou, Alexander Kalinin, Olga Papaemmanouil, and Stanley B Zdonik. 2013.
Query Steering for Interactive Data Exploration. In CIDR.

[13] Yolande E Chan and Veda C Storey. 1996. The use of spreadsheets in organizations:
Determinants and consequences. Information & Management 31, 3 (1996), 119–
134.

[14] Zhe Chen and Michael Cafarella. 2013. Automatic web spreadsheet data extrac-
tion. In Proceedings of the 3rd International Workshop on Semantic Search over the

Web. 1–8.
[15] Zhe Chen and Michael Cafarella. 2014. Integrating spreadsheet data via accurate

and low-effort extraction. In Proceedings of the 20th ACM SIGKDD international

conference on Knowledge discovery and data mining. 1126–1135.
[16] Zhe Chen, Michael Cafarella, Jun Chen, Daniel Prevo, and Junfeng Zhuang. 2013.

Senbazuru: A prototype spreadsheet database management system. VLDB 6, 12
(2013), 1202–1205.

[17] Zhe Chen, Sasha Dadiomov, Richard Wesley, Gang Xiao, Daniel Cory, Michael
Cafarella, and Jock Mackinlay. 2017. Spreadsheet property detection with rule-
assisted active learning. In Proceedings of the 2017 ACM on Conference on Infor-

mation and Knowledge Management. ACM, 999–1008.
[18] EH-H Chi, Phillip Barry, John Riedl, and Joseph Konstan. 1997. A spreadsheet

approach to information visualization. In Information Visualization, 1997. Pro-

ceedings., IEEE Symposium on. IEEE, 17–24.
[19] Andy Cockburn, Amy Karlson, and Benjamin B Bederson. 2009. A review of

overview+ detail, zooming, and focus+ context interfaces. ACM Computing

Surveys (CSUR) 41, 1 (2009), 2.
[20] Murray Cox. 2020. The inside airbnb dataset. Retrieved December 15, 2020 from

http://insideairbnb.com/get-the-data.html
[21] Haoyu Dong, Shijie Liu, Shi Han, Zhouyu Fu, and Dongmei Zhang. 2019. Ta-

bleSense: Spreadsheet Table Detection with Convolutional Neural Networks. In
Thirty-Third AAAI Conference on Artificial Intelligence.

[22] Niklas Elmqvist and Jean-Daniel Fekete. 2009. Hierarchical aggregation for
information visualization: Overview, techniques, and design guidelines. IEEE
Transactions on Visualization and Computer Graphics 16, 3 (2009), 439–454.

[23] Ju Fan, Guoliang Li, and Lizhu Zhou. 2011. Interactive SQL query suggestion:
Making databases user-friendly. In 2011 IEEE 27th International Conference on

Data Engineering. IEEE, 351–362.
[24] Johanna Fulda, Matthew Brehmel, and Tamara Munzner. 2015. TimeLineCurator:

Interactive authoring of visual timelines from unstructured text. IEEE transactions
on visualization and computer graphics 22, 1 (2015), 300–309.

[25] Google. 2020. Google Explore. Retrieved December 15, 2020 from https:
//support.google.com/docs/answer/6280499

[26] Google. 2020. Google Sheets scale. Retrieved December 15, 2020 from https:
//developers.google.com/drive/answer/37603

[27] Jim Gray, Surajit Chaudhuri, Adam Bosworth, Andrew Layman, Don Reichart,
Murali Venkatrao, Frank Pellow, and Hamid Pirahesh. 1997. Data cube: A re-
lational aggregation operator generalizing group-by, cross-tab, and sub-totals.
Data mining and knowledge discovery 1, 1 (1997), 29–53.

[28] JonathanGrudin. 2001. Partitioning digital worlds: focal and peripheral awareness
in multiple monitor use. In Proceedings of the SIGCHI conference on Human factors

in computing systems. ACM, 458–465.
[29] Sumit Gulwani. 2011. Automating string processing in spreadsheets using input-

output examples. ACM Sigplan Notices 46, 1 (2011), 317–330.
[30] Thomas Höllt, Nicola Pezzotti, Vincent van Unen, Frits Koning, Elmar Eisemann,

Boudewijn Lelieveldt, and Anna Vilanova. 2016. Cytosplore: Interactive Immune
Cell Phenotyping for Large Single-Cell Datasets. In Computer Graphics Forum,
Vol. 35. Wiley Online Library, 171–180.

[31] Stratos Idreos and Erietta Liarou. 2013. dbTouch: Analytics at your Fingertips..
In CIDR.

[32] Yannis Ioannidis. 2003. The history of histograms (abridged). In Proceedings 2003

VLDB Conference. Elsevier, 19–30.
[33] HV Jagadish, Adriane Chapman, Aaron Elkiss, Magesh Jayapandian, Yunyao Li,

Arnab Nandi, and Cong Yu. 2007. Making database systems usable. In Proceedings

of the 2007 ACM SIGMOD international conference on Management of data. 13–24.
[34] Minsuk Kahng, Shamkant B Navathe, John T Stasko, and Duen Horng Polo Chau.

2016. Interactive Browsing and Navigation in Relational Databases. Proceedings
of the VLDB Endowment 9, 12 (2016).

[35] Sean Kandel, Andreas Paepcke, Martin Theobald, Hector Garcia-Molina, and Eric
Abelson. 2008. Photospread: a spreadsheet for managing photos. In Proceedings of

the SIGCHI conference on human factors in computing systems. ACM, 1749–1758.
[36] Miranda Katz. 2017. A Lone Data Whiz Is Fighting Airbnb—and Winning. Re-

trieved December 15, 2020 from https://www.wired.com/2017/02/a-lone-data-
whiz-is-fighting-airbnb-and-winning/

[37] Nodira Khoussainova, Magda Balazinska,Wolfgang Gatterbauer, YongChul Kwon,
and Dan Suciu. 2009. A Case for A Collaborative Query Management System.. In
CIDR.

[38] Nodira Khoussainova, YongChul Kwon, Magdalena Balazinska, and Dan Suciu.
2010. SnipSuggest: Context-aware autocompletion for SQL. VLDB Endowment 4,
1 (2010), 22–33.

[39] Barry R Lawson, Kenneth R Baker, Stephen G Powell, and Lynn Foster-Johnson.
2009. A comparison of spreadsheet users with different levels of experience.
Omega 37, 3 (2009), 579–590.

[40] Aristotelis Leventidis, Jiahui Zhang, Cody Dunne, Wolfgang Gatterbauer, HV
Jagadish, and Mirek Riedewald. 2020. QueryVis: Logic-based diagrams help
users understand complicated SQL queries faster. In Proceedings of the 2020 ACM

SIGMOD International Conference on Management of Data. 2303–2318.
[41] Marc Levoy. 1994. Spreadsheets for images. In Proceedings of the 21st annual

conference on Computer graphics and interactive techniques. ACM, 139–146.
[42] Zhicheng Liu, Biye Jiang, and Jeffrey Heer. 2013. imMens: Real-time Visual

Querying of Big Data. In Computer Graphics Forum, Vol. 32. Wiley Online Library,
421–430.

[43] Kelly Mack, John Lee, Kevin Chen-Chuan Chang, Karrie Karahalios, and Aditya G.
Parameswaran. 2018. Characterizing Scalability Issues in Spreadsheet Software
using Online Forums. In Extended Abstracts of the 2018 CHI Conference on Human

Factors in Computing Systems, CHI 2018, Montreal, QC, Canada, April 21-26, 2018.
[44] Jock D. Mackinlay, Pat Hanrahan, and Chris Stolte. 2007. Show Me: Automatic

presentation for visual analysis. IEEE Transactions on Visualization and Computer

Graphics 13, 6 (2007), 1137–1144. https://doi.org/10.1109/TVCG.2007.70594
[45] LiamMcNabb and Robert S Laramee. 2017. Survey of Surveys (SoS)-Mapping The

Landscape of Survey Papers in Information Visualization. In Computer Graphics

Forum, Vol. 36. Wiley Online Library, 589–617.
[46] Metabase. 2020. Metabase Inc. Retrieved December 15, 2020 from https:

//www.metabase.com/
[47] Miriah Meyer, Michael Sedlmair, P Samuel Quinan, and Tamara Munzner. 2015.

The nested blocks and guidelines model. Information Visualization 14, 3 (2015),
234–249.

[48] Microsoft. 2020. Excel Specifications and Limits. Retrieved December 15, 2020
from https://support.microsoft.com/en-us/office/excel-specifications-and-limits-
1672b34d-7043-467e-8e27-269d656771c3

[49] Microsoft. 2020. How finance leaders can drive performance. Retrieved Decem-
ber 15, 2020 from https://enterprise.microsoft.com/en-gb/articles/roles/finance-
leader/how-finance-leaders-can-drive-performance/

[50] Microsoft. 2020. Power BI. Retrieved December 15, 2020 from https://powerbi.
microsoft.com/en-us/

[51] Microsoft. 2020. SQL Server Reporting Services. Retrieved December 15, 2020
from https://docs.microsoft.com/en-us/sql/reporting-services

[52] Microsoft. 2020. SUBTOTAL. Retrieved December 15, 2020
from https://support.office.com/en-us/article/subtotal-function-7b027003-f060-
4ade-9040-e478765b9939

982

http://insideairbnb.com/get-the-data.html
https://support.google.com/docs/answer/6280499
https://support.google.com/docs/answer/6280499
https://developers.google.com/drive/answer/37603
https://developers.google.com/drive/answer/37603
https://www.wired.com/2017/02/a-lone-data-whiz-is-fighting-airbnb-and-winning/
https://www.wired.com/2017/02/a-lone-data-whiz-is-fighting-airbnb-and-winning/
https://doi.org/10.1109/TVCG.2007.70594
https://www.metabase.com/
https://www.metabase.com/
https://support.microsoft.com/en-us/office/excel-specifications-and-limits-1672b34d-7043-467e-8e27-269d656771c3
https://support.microsoft.com/en-us/office/excel-specifications-and-limits-1672b34d-7043-467e-8e27-269d656771c3
https://enterprise.microsoft.com/en-gb/articles/roles/finance-leader/how-finance-leaders-can-drive-performance/
https://enterprise.microsoft.com/en-gb/articles/roles/finance-leader/how-finance-leaders-can-drive-performance/
https://powerbi.microsoft.com/en-us/
https://powerbi.microsoft.com/en-us/
https://docs.microsoft.com/en-us/sql/reporting-services
https://support.office.com/en-us/article/subtotal-function-7b027003-f060-4ade-9040-e478765b9939
https://support.office.com/en-us/article/subtotal-function-7b027003-f060-4ade-9040-e478765b9939

[53] Tova Milo and Amit Somech. 2018. Next-step suggestions for modern interactive
data analysis platforms. In Proceedings of the 24th ACM SIGKDD International

Conference on Knowledge Discovery & Data Mining. 576–585.
[54] Dominik Moritz, Bill Howe, and Jeffrey Heer. 2019. Falcon: Balancing interactive

latency and resolution sensitivity for scalable linked visualizations. In Proceedings
of the 2019 CHI Conference on Human Factors in Computing Systems. 1–11.

[55] Hamid Mousavi and Carlo Zaniolo. 2011. Fast and accurate computation of
equi-depth histograms over data streams. In Proceedings of the 14th International

Conference on Extending Database Technology. ACM, 69–80.
[56] Arnab Nandi, Lilong Jiang, and Michael Mandel. 2013. Gestural Query Specifica-

tion. VLDB Endowment 7, 4 (2013). http://web.cse.ohio-state.edu/~jianglil/files/
gestureQuerySpecification.pdf

[57] Bonnie A Nardi and James R Miller. 1990. The spreadsheet interface: A basis for

end user programming. Hewlett-Packard Laboratories.
[58] Fabian Nunez and Edwin Blake. 2000. Vissh: A data visualisation spreadsheet. In

Data Visualization 2000. Springer, 209–218.
[59] Bureau of Transportation Statistics. 2020. The US flight dataset. Retrieved

December 15, 2020 from https://www.transtats.bts.gov/
[60] Oracle. 2020. Oracle Service Cloud Analytics. Retrieved December 15, 2020

from https://docs.oracle.com/cloud/may2015/servicecs_gs/servicecs_report.htm
[61] Raymond R Panko. 1998. What we know about spreadsheet errors. Journal of

Organizational and End User Computing (JOEUC) 10, 2 (1998), 15–21.
[62] Ken Perlin and David Fox. 1993. Pad: an alternative approach to the computer

interface. In Proceedings of the 20th annual conference on Computer graphics and

interactive techniques. ACM, 57–64.
[63] Kurt W Piersol. 1986. Object-oriented spreadsheets: the analytic spreadsheet

package. In ACM Sigplan Notices, Vol. 21. ACM, 385–390.
[64] Johannes Pretorius, Helen C Purchase, and John T Stasko. 2014. Tasks for multi-

variate network analysis. InMultivariate Network Visualization. Springer, 77–95.
[65] Neil Raden. 2005. Shedding light on shadow IT: Is Excel running your business.

DSSResources.com 26 (2005).
[66] Sajjadur Rahman et al. 2020. NOAH: Interactive Spreadsheet Exploration

with Dynamic Hierarchical Overviews. http://tiny.cc/noahTR (2020).
[67] Sajjadur Rahman, Kelly Mack, Mangesh Bendre, Ruilin Zhang, Karrie Karahalios,

and Aditya Parameswaran. 2020. Benchmarking Spreadsheet Systems. In Pro-

ceedings of the 2020 ACM SIGMOD International Conference on Management of

Data. 1589–1599.
[68] Vijayshankar Raman, Andy Chou, and Joseph M Hellerstein. 1999. Scalable

Spreadsheets for Interactive Data Analysis. InACM SIGMODWorkshop on DMKD.
[69] Vijayshankar Raman, Bhaskaran Raman, and Joseph M Hellerstein. 1999. Online

dynamic reordering for interactive data processing. In VLDB, Vol. 99. 709–720.
[70] Named ranges. 2020. Define and use names in formulas. Retrieved December

15, 2020 from https://www.excel-easy.com/examples/names-in-formulas.html
[71] Jonathan C Roberts. 2007. State of the art: Coordinated & multiple views in

exploratory visualization. In Coordinated and Multiple Views in Exploratory Visu-

alization, 2007. CMV’07. Fifth International Conference on. IEEE, 61–71.
[72] Ben Shneiderman. 2003. The eyes have it: A task by data type taxonomy for

information visualizations. In The Craft of Information Visualization. Elsevier,
364–371.

[73] Tableau. 2020. Tableau Software. Retrieved December 15, 2020 from https:
//www.tableau.com/

[74] Jerzy Tyszkiewicz. 2010. Spreadsheet as a relational database engine. In SIGMOD.
ACM, 195–206.

[75] Michelle Q Wang Baldonado, Allison Woodruff, and Allan Kuchinsky. 2000.
Guidelines for using multiple views in information visualization. In Proceedings

of the working conference on Advanced visual interfaces. ACM, 110–119.
[76] Jennifer Watts-Perotti and David D Woods. 1999. How experienced users avoid

getting lost in large display networks. International Journal of Human-Computer

Interaction 11, 4 (1999), 269–299.
[77] Wikipedia. 2020. Pivot Table. Retrieved December 15, 2020 from https://en.

wikipedia.org/wiki/Pivot_table
[78] Kanit Wongsuphasawat, Dominik Moritz, Anushka Anand, Jock Mackinlay, Bill

Howe, and Jeffrey Heer. 2016. Voyager: Exploratory analysis via faceted browsing
of visualization recommendations. IEEE Transactions on Visualization & Computer

Graphics 1 (2016), 1–1.
[79] Mehmet Adil Yalçın, Niklas Elmqvist, and Benjamin B Bederson. 2018. Keshif:

Rapid and expressive tabular data exploration for novices. IEEE transactions on

visualization and computer graphics 24, 8 (2018), 2339–2352.
[80] Pingjing Yang, Ti-Chung Cheng, Sajjadur Rahman, Mangesh Bendre, Karrie

Karahalios, and Aditya Parameswaran. 2020. Understanding Data Analysis
Workflows on Spreadsheets: Roadblocks and Opportunities. In Proceedings of

Workshop on Human-In-the-Loop Data Analytics (HILDA’20).

983

http://web.cse.ohio-state.edu/~jianglil/files/gestureQuerySpecification.pdf
http://web.cse.ohio-state.edu/~jianglil/files/gestureQuerySpecification.pdf
https://www.transtats.bts.gov/
https://docs.oracle.com/cloud/may2015/servicecs_gs/servicecs_report.htm
https://www.excel-easy.com/examples/names-in-formulas.html
https://www.tableau.com/
https://www.tableau.com/
https://en.wikipedia.org/wiki/Pivot_table
https://en.wikipedia.org/wiki/Pivot_table

