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ABSTRACT
Data volumes are growing exponentially for our decision-support
systems making it challenging to ensure interactive response time
for ad-hoc queries without increasing cost of hardware. Aggrega-
tion queries with Group By that produce an aggregate value for
every combination of values in the grouping columns are the most
important class of ad-hoc queries. As small errors are usually tol-
erable for such queries, approximate query processing (AQP) has
the potential to answer them over very large datasets much faster.
In many cases analysts require the distribution of (group, aggvalue)
pairs in the estimated answer to be guaranteed within a certain er-
ror threshold of the exact distribution. Existing AQP techniques
are inadequate for two main reasons. First, users cannot express
such guarantees. Second, sampling techniques used in traditional
AQP can produce arbitrarily large errors even for SUM queries. To
address those limitations, we first introduce a new precision met-
ric, called distribution precision, to express such error guarantees.
We then study how to provide fast approximate answers to aggre-
gation queries with distribution precision guaranteed within a user-
specified error bound. The main challenges are to provide rigorous
error guarantees and to handle arbitrary highly selective predicates
without maintaining large-sized samples. We propose a novel sam-
pling scheme called measure-biased sampling to address the former
challenge. For the latter, we propose two new indexes to augment
in-memory samples. Like other sampling-based AQP techniques,
our solution supports any aggregate that can be estimated from ran-
dom samples. In addition to deriving theoretical guarantees, we
conduct experimental study to compare our system with state-of-
the-art AQP techniques and a commercial column-store database
system on both synthetic and real enterprise datasets. Our system
provides a median speed-up of more than 100x with around 5%
distribution error compared with the commercial database.

1. INTRODUCTION
Enterprises are collecting large volumes of data and are increas-

ingly relying on analysis of the data to drive their businesses. For
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example, data analysts in a retail enterprise slice and dice their sales
data to understand the sales performance along different dimen-
sions like product and geographic location with a varying set of fil-
tering conditions. Interactive query response time is critical in such
data exploration; studies in human-computer interaction show that
the analyst typically loses the analysis context if the response time
is above one second [26]. Unfortunately, as data volume (i.e., num-
ber of rows) and complexity of filtering conditions increase (e.g.,
arbitrary user-given logical expression on multiple dimensions), the
response time to answer such queries becomes longer unless addi-
tional hardware resources are leveraged. Is it possible to fend off
the need for additional resources by leveraging the fact that “small”
errors are acceptable for such exploratory queries?

For arbitrary SQL queries, it is hard to take advantage of the
flexibility of answering queries with “small” errors, because of the
difficulty of defining “error” in an easy-to-understand manner. For-
tunately, there is a very important class of queries for which we can
both crisply formalize the notion of “small” errors and take advan-
tage of this flexibility in bringing down response time using approx-
imate query processing (AQP) techniques. A query in this class is a
SQL query with aggregation on a few measure attributes (e.g., sales
and population) along with a filter predicate and a group-by oper-
ator (see Section 2.1). Such aggregation queries are very common
in OLAP and many business intelligence (BI) applications.
Limitations of existing AQP systems. For many tasks, analysts
require the returned distribution of (group, aggvalue) pairs to be
within a certain error threshold of the exact distribution. Suppose
the analyst wants to visualize the (group, aggvalue) pairs using a
pie-chart. She would require the error between the two distributions
to be small such that the pie-chart based on the returned answer is
similar to that based on the exact answer in terms of relative areas
for the different groups. Existing sampling-based AQP systems,
e.g., in [3, 12, 7, 5], fall short in such tasks for two main reasons:
• Inadequate semantics of precision metrics: Confidence inter-
val (CI) [3, 5] used by existing AQP systems are inadequate to
express the above guarantees. A 90% confidence interval CI =
[est − w, est + w] means that, informally, with 90% probability
(pre-sampling), the resulting CI covers the true value, where est is
the estimated value for a group [22]. CI-based techniques measure
the error for each group independently, but not for the entire distri-
bution: a 90% CI for every group does not mean they are correct
for all groups at the same time with 90% probability. What we
seek is a precision metric that captures errors across groups. While
mean squared (relative) error (MSE) [12, 7] provides another alter-
native to measure precision, MSE can be estimated after the query
has been evaluated but cannot be guaranteed in advance.
•Unbounded (data-dependent) errors: Consider a SUM query. For
a sample Sm of m rows drawn from n rows (in one group) on the
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ID C1 C2 C3 M

1 0 0 0 1
. . . 0 0 0 1
90 0 0 0 1
91 0 1 0 10
. . . 0 1 0 10
100 0 1 0 10
101 1 0 0 1
. . . 1 0 0 1
198 1 0 0 1
199 1 0 0 100
200 1 0 1 100

(a) Example table T : rows 1-
90 / 91-100 / 101-198 have the
same dimension values

C1 = 0

39%

C1 = 1

61%

(b) Distribution answer

15%

85%

(c) Case I

66%

34%

(d) Case II

Figure 1: Table and Answer to aggregation query

measure attribute, the CI width is proportional to std(Sm)/
√
m

[16, 5] for uniform sampling and stratified sampling – std(Sm) is
the sample standard deviation on the measure attribute. In particu-
lar, for SUM, the 90% CI width is w ≈ 1.65n · std(Sm)/

√
m (the

constant 1.65 is determined by the confidence level 90% and cen-
tral limit theorem). This result has a profound implication. Since
std(Sm) depends on data and can be arbitrarily large, the CI width
can be arbitrarily large. As a consequence, it is not possible to
support AQP with a user-specified error bound in many situations.

We illustrate the above drawbacks using an example.

EXAMPLE 1.1. Consider a table T with C1 (state), C2 (prod-
uct), C3 (customer group), a measure M (sales), and 200 rows, in
Figure 1(a). An analyst wants to find sales number per state with

Q: SELECT C1, SUM(M) FROM T GROUP BY C1.
The answer is a set of (group, aggvalue)-pairs: {(C1 = 0, 190),
(C1 = 1, 298)}. We can normalize the answer as a distribution x
= 〈190/488, 298/488〉 = 〈0.39, 0.61〉 (pie-chart in Figure 1(b)).

Suppose a sample of 20 rows are drawn uniformly from T to an-
swer Q. With high chance, 9 rows from rows 1-90 with M = 1 and
1 row from rows 91-100 withM = 10 are picked for the first group
(C1 = 0). For the second group (C1 = 1), there are two cases with
high probability. Case I: when exactly one of rows 199 and 200 is
in the sample, the answer is estimated as {(C1 = 0, 19/0.1), (C1 =
1, 109/0.1)}, which can be normalized as 〈19/128, 109/128〉 =
〈0.15, 0.85〉 (pie-chart in Figure 1(c)). Case II: when neither of
rows 199 and 200 is taken, the answer is estimated as {(0, 19/0.1),
(1, 10/0.1)} and normalized as 〈19/29, 10/29〉 = 〈0.66, 0.34〉
(pie-chart in Figure 1(d)). This shows that uniform sampling can
produce large errors. Stratified sampling in [5, 3] and small group
sampling in [7] cannot help here. They use different sampling rates
for groups of different sizes. But the two groups in the answer to Q
have the same size. These techniques end up with drawing uniform
samples from each group, and suffer from the same issue.

As mentioned above, for SUM, we have the CI widthw = 1.65n·
std(Sm)/

√
m. For the second group in the above (C1 = 1), the

true value is 298. In Case I, we have est = 1090, and w ≈ 1470
– CI correctly covers the true value but is too wide as std(Sm) is
large. In Case II, we have est = 100, and w = 0 (as std(Sm) =
0), which does not cover the true value. In both cases, it is difficult
to guarantee the error to be within a user-given threshold.

Contributions. In this paper, we build an AQP system to answer
aggregation queries with interactive speed that addresses the above
two limitations. It processes aggregation queries with precision
of answers guaranteed within a user-given error bound. We first
focus on queries on single table with predicates and COUNT/SUM

aggregates, which are central to many BI tasks. We also describe
how our techniques are extended for queries with foreign-key joins
on multiple tables, and a large class of predicates and aggregates.

Our approach, referred to as sample+seek is driven by several
key insights. First, we want to find a way to capture precision of
the entire distribution across groups. To address this issue, we in-
troduce the notion of distribution precision. Second, we assert that
AQP is not effective with unbounded data-dependent errors, as il-
lustrated in Example 1.1. Therefore, we must look beyond tradi-
tional uniform/stratified sampling-based techniques to find an ef-
fective sampling schema aided by indexes if necessary, which is
not subject to unbounded errors and able to deal with a large class
of queries, including those with highly selective predicates. To ad-
dress the second issue, we introduce a combination of novel sam-
pling strategy (measure-biased sampling) and indexes (measure-
augmented inverted index and low-frequency group index). We de-
scribe these three key aspects of our framework below.
• Precision metric. We propose to use, distribution precision, to
measure the precision of the entire distribution over all groups (as
opposed to the precision of individual groups) and to allow the ana-
lyst to express the desired guarantees. Distribution precision is de-
fined to be the L2 distance between normalized distributions of the
approximate answer and the exact one. In Example 1.1, the distri-
bution answer x = 〈0.39, 0.61〉. And if we give an approximation
x̂ = 〈0.40, 0.60〉, their L2 distance is ‖x−x̂‖2 =

√
0.012 + 0.012

= 0.014. The analyst specifies the value of a single parameter,
error upper bound ε, and our system guarantees to produce an ap-
proximation x̂ s.t. with high probability (e.g., 0.9), ‖x− x̂‖2 ≤ ε.
• Measure-biased sampling. We address the challenge of avoid-
ing data-dependent error bound by developing a novel sampling
scheme called measure-biased sampling. The insight is to pick
a row with probability proportional to its value on the measure
attribute. For SUM-queries without predicates, we show that a
measure-biased sample of O

(
1/ε2

)
rows suffices to give answers

under our distribution precision guarantee with errors independent
of the (sample) standard deviation of measure values.
• Indexes for selective predicates. Large samples have to be main-
tained to handle queries with highly selective predicates. We ad-
dress this challenge by building two auxiliary indexes, measure-
augmented inverted index and low-frequency group index, to aid
in-memory samples. For selective predicates, we identify rows that
satisfy the predicate by looking up these two indexes instead of
maintaining prohibitively large samples in memory. The insight is
that since we need to lookup rows only for highly selective predi-
cates, we need very few data accesses to guarantee the distribution
precision. In particular, we need at most O

(
1/ε2

)
random I/O’s to

answer selective queries under our precision guarantee.
Extensibility. Our solution enjoys the same degree of extensibility
as other sampling-based AQP techniques (e.g. [7, 5]) do and thus
supports a range of aggregate functions like AVG, STDEV, and
COUNT(DISTINCT ·). Specialized summaries like views [6],
data cube [18], and histograms [17] do not have such extensibil-
ity. Our solution can be easily extended for foreign key joins in a
star/snowflake schema. The predicates we can handle range from
(dis)conjunctions of constraints on categorical dimensions to range
constraints and arbitrary AND-OR logical expressions of them.

Our experiments show that compared to the state of the art AQP
systems, our sample+seek solution provides answers with equal or
less error in orders of magnitude faster response time.
Organization. Section 2 introduces the class of aggregation queries
our system can handle and formalizes our distribution precision
guarantee. Section 3 overviews our sample+seek approach and
system architecture. Details about the “sample” part, i.e., how to
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construct and utilize uniform and measure-biased samples, is intro-
duced in Section 4, and the “seek” part, i.e., auxiliary indexes, is in
Section 5. Section 6 discusses extensions of our approach. Exper-
imental study is reported in Section 7, followed by related work in
Section 8 and conclusion in Section 9. Proofs of most non-trivial
theorems and additional experiments are in the appendix.

2. PRELIMINARIES
We first define the class of queries that we focus on, and formal-

ize the precision guarantee our system offers for query answers.

2.1 Single-Block Aggregation Queries
T (D1, . . . , DdC ,M1, . . . ,MdM) is a table with dC + dM dimen-

sions. D1, . . . , DdC are group-by and predicate dimensions and
M1, . . . , MdM are measure attributes. Types of dimensions are de-
fined by data owner. A column can be both a group-by/predicate
dimension and a measure at the same time in different queries.

For a row t ∈ T , let tD and tM be the values of dimension D
and measure M on this row, respectively, and tID denote the ID of
a row. Let |T | = n be the number of rows in T .
Table aggregation queries. For the ease of explanation, we first
focus on queries in the form of Q(G, F (M),P), called table ag-
gregation queries, on a single table T to introduce our techniques:

SELECT G, F (M) FROM T WHERE P GROUP BY G. (1)

• Group-by dimensions G ⊆ {D1, . . . , DdC} are a subset of di-
mensions of T on which rows are aggregated on.
• Aggregate measure F (M) is COUNT(∗) or SUM(M) where
M ∈ {M1, . . . ,Mm} is a measure attribute.
• Predicate P consists of equality constraints on categorical di-

mensions {D1, . . . , DdC}, in the form of “Di = vi”. P is an
AND-OR expression of multiple such constraints.

For simplicity of discussion, we assume that values of a measureM
are non-negative when presenting our techniques. How to handle
measures with negative values will be introduced in Section 6.1 .
Single-block aggregation queries. Our techniques can be extended
for a more general class, single-block aggregation queries, which
generalizes the class of table aggregation queries in three aspects: i)
(schema) to support foreign key joins on a star/snowflake schema;
ii) (predicates) to support range constraints on numeric dimen-
sions and arbitrary AND-OR logical expressionsP of equality con-
straints and range constraints; iii) (aggregates) support more ag-
gregates, e.g., AVG(M), STDEV(M), and COUNT(DistinctM).
We introduce how our system handles the above extensions in Sec-
tion 6.2. The class of aggregates supported by us is the same as the
class supported by state of the art AQP systems like BlinkDB [5].
Answers and distributions. An output to an aggregation query Q
is a set of (group, value)-pairs, {(g1, z1), (g2, z2), . . . , (gr, zr)},
where r is the number of distinct values on the product of group-by
dimensions G = {G1, . . . , Gl}. Each gi ∈ G1 × G2 × . . . Gl is
said to be a group, and zi is the corresponding aggregate value. We
can present the output to be an r-dim vector z = 〈z1, . . . , zr〉.

The query output z can be normalized as a distribution on all
groups G1 × . . .×Gl: let xi ← zi/

∑r
j=1 zj , for i = 1, 2, . . . , r.

The vector x = 〈x1, . . . , xr〉 is said to be a distribution answer (or
answer for short) to the query Q. Our guarantee about precision
introduced next is w.r.t. the distribution answer with the goal of
preserving the relative ratio/order of groups in the query output.

2.2 Distribution Precision Guarantee
Computing the exact output or distribution answer x to a queryQ

can be expensive on large tables. Our system produces an estimated

distribution answer x̂ = 〈x̂1, . . . , x̂r〉. We propose to measure the
error in x̂ using the L2(Euclidean)-distance between x and x̂, i.e.,
‖x − x̂‖2 =

√∑r
i=1(xi − x̂i)2. For the ease of understanding,

we can rephrase ‖x− x̂‖2 in words as follows:√√√√ ∑
group i

(
group i’s value

total group value
− estimated group i’s value

total est. group value

)2

. (2)

Our system allows users to specify an error bound ε which is
independent on both the query Q and the data distribution in table
T . The estimated answer x̂ is called an ε-approximate answer or
ε-approximation of the true distribution answer x if ‖x− x̂‖2 ≤ ε.
System task and precision guarantee. Our AQP system processes
single-block aggregation queries and promises ε-distribution preci-
sion guarantee: that is, for a user-specified error bound ε, our sys-
tem can produce an estimated answer x̂ for any given single-block
aggregation queryQ, s.t. x̂ must be an ε-approximation of the exact
answer x to Q, i.e., ‖x− x̂‖2 ≤ ε, with high probability.

As discussed in Section 1, compared to CI, our distribution pre-
cision guarantee based on L2-distance is more rigorous, easier to
be interpreted, and has only one parameter ε that consistently mea-
sures how two answers differentiate globally.

Another good property of our guarantee is: maxi |xi − x̂i| ≤
‖x− x̂‖2 ≤ ε. It says that, when ε-distribution precision guarantee
holds, the max of errors |xi − x̂i| for all groups is also bounded by
ε, with high probability. It implies that the order of groups or the
top-k groups derived from x̂ can be wrong by at most ε.

3. SYSTEM OVERVIEW
We give an overview of our solution in Section 3.1, including

sample/index building and aggregation query processing, and sum-
marize the main theoretical results we obtain. In Section 3.2, we
introduce the architecture of our system.

3.1 Overview of Our Approach
To tackle the inherent deficiency of sampling-based approach

when handling queries with very selective predicates, we propose
a novel sample+seek framework. We classify queries into large
queries and small queries based on how many rows satisfy the
predicates. For large queries, with many rows satisfying their pred-
icates, we are able to collect enough number of rows satisfying
their predicates from a uniform sample or a new sample designed
for SUM aggregates, called measure-biased sample, to obtain ε-
approximate answers. For small queries, random samples are not
sufficient, so we propose two new index structures, called measure-
augmented inverted index and low-frequency group index, to eval-
uate them for ε-approximations using index seeks.

3.1.1 Classification of Queries
We classify queries using (measure) selectivity into large queries

and small queries, based on the hardness of being answered.

DEFINITION 1. (Selectivity and Measure selectivity) The se-
lectivity of predicate P in a query Q against a table T is s(P) =
|TP |/|T | where |T | is the number of rows in T and TP ⊆ T is the
set of rows that satisfy the predicates P in T .

The measure selectivity of predicate P in a query Q against
a table T on measure M is sM (P) = M(TP)/M(T ), where
M(TP) =

∑
t∈TP

tM and M(T ) =
∑
t∈T tM .

DEFINITION 2. (Large queries and small queries) For a selec-
tivity threshold s0, a queryQ with COUNT aggregate is a s0-large
query iff s(P) ≥ s0 and otherwise a s0-small query.

Similarly, a query Q with SUM(M) is a s0-large query iff we
have sM (P) ≥ s0, and otherwise a s0-small query.
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Input: aggregation query Q(G, F (M),P)
Output: ε-approximate answer distribution
1: If F = COUNT then
2: (x̂, supx̂)← ProcessWithDataBubble(Q,T 0);
3: Else If F = SUM then
4: (x̂, supx̂)← ProcessWithDataBubble(Q,TM ).
5: If supx̂ ≥ 1/ε2 then
6: Output x̂;
7: Else
8: If the low-frequency group index is usable
9: x̂← ProcessWithLFIndex(Q);

10: Else
11: x̂← ProcessWithMAIndex(Q);
12: Output x̂.

Algorithm 1: Processing Aggregation Queries

We set s0 to be 1/
√
n, where n is the number of rows in T , in

most of discussion and analysis later on. We simply call the two
classes large queries and small queries when s0 = 1/

√
n.

3.1.2 Offline Sampling and Index Building
For a table T with dC group-by and predicate dimensions, dM

measures, and n rows, we build three types of samples/indexes.
The first one is called data bubble. Each data bubble is a random

sample of rows drawn from T . We draw a uniform sample T 0 ⊆
T containing O

(√
n/ε2

)
rows to answer COUNT-queries, and a

measure-biased sample containing O
(√
n/ε2

)
rows TM used to

answer SUM(M)-queries for each measure dimensionM . So there
are a total of dM+1 data bubbles. The basic idea of measure-biased
sampling is to pick a row t in T with replacement with probabil-
ity proportional to tM , to get ε-approximate answers to SUM(M)-
queries using a minimum number of sample rows. As their sizes
are sublinear in n, we load them into memory in pre-processing.

The second one is called measure-augmented inverted index. For
each value of a categorical dimension, we keep a postings list of
row IDs where this value appears in the corresponding dimension.
Up until now, it is similar to an inverted index in IR systems. We
then augment each postings list with rough values of measures. For
example, if tM = 28 + 10, we store 8 (i.e., apx(tM ) = 28) for
tM in the index to save space. Similar to measure-biased sampling,
these rough values apx(tM )’s will be used to guide our online sam-
pling when processing SUM-aggregation queries. We keep this in-
dex on disk if we do not have enough memory, but each postings
list is stored sequentially s.t. it can be efficiently read when needed.

The third one is called low-frequency group index. In this index,
for each value that is infrequent in a categorical dimension, i.e., the
number of rows containing it is no more than

√
n, we materialize

these rows sequentially on disk. The motivation of this index is
that, if an infrequent value appears in the predicate of a query as
part of a conjunction, we can simply scan these rows sequentially
on disk to calculate the answer. For example, consider the table T
in Figure 1(a) and a predicate “C2 = 1 AND C3 = 0”. Only 10
rows satisfy C2 = 1, so we can simply scan them for the answer.

3.1.3 Sample+Seek Processing of Queries
Our system does not estimate queries’ selectivities. For every in-

coming query, we first proceed with our uniform sample or measure-
biased samples. If enough number (1/ε2) of rows satisfying its
predicate are collected from the samples, an ε-approximation can
be produced. For large queries, the processing can be terminated
at this point with high probability. Only when our system does not

collect enough number of rows satisfying the predicate from the
samples, it continues to use the other two deterministic auxiliary
indexes to evaluate the query for ε-approximation.

Our query processing algorithm is outlined in Algorithm 1. We
process a query with the data bubble samples first (lines 1-4). Let
x̂ be the estimated distribution answer, and supx̂ be the number of
sample rows satisfying the predicate P (those used to calculate x̂).
If supx̂ ≥ 1/ε2, we can terminate with an ε-approximate answer x̂
(lines 5-6); otherwise, x̂ is not accurate enough, so we will continue
to check whether the low-frequency group index is usable (lines 8-
9), or refer to the measure-augmented inverted index (lines 10-11).

Section 4 introduces how to create and utilize data bubble sam-
ples. Section 5 presents how to build and process queries with
measure-augmented inverted index and low-frequency group index.

3.1.4 A Summary of Theoretical Guarantees
We now present the performance guarantees of our system for

producing ε-approximations, in an informal way.
Main results. For a table T with dC group-by/predicate dimen-
sions, dM measures, and n rows. We need to keep O

(√
n/ε2

)
rows

in each of the dM+1 data bubbles. For any aggregation queryQ(G,
F (M), P), we need to scan one of the data bubbles to compute ε-
approximate answer in linear time O

(
|G| ·
√
n/ε2

)
. If Q is a large

query, we can terminate with an ε-approximation with high proba-
bility. If Q is a small query and the low-frequency group index can
be used to answer it, we scan at most

√
n rows in the index to get

its answer. If the low-frequency group index cannot be used, we
can always use the measure-augmented inverted index to perform
O
(
1/ε2

)
random I/O’s for an ε-approximation.

Parameters. Both the error bound ε and the selectivity threshold
s0 are tunable. Our theoretical results and system can be extended
for general parameter settings. The precision parameter ε can be
specified by users or administrators to trade-off between precision
and indexing/processing cost. The selectivity threshold s0 is set as
1/
√
n by default. Generally, the size of each sample needs to be

O
(
(1/s0) · (1/ε2)

)
to get ε-approximations for s0-large queries.

Error bound and accuracy probability in big O notations. All
the theoretical results about obtaining ε-approximation in this pa-
per hold with high probability (“w.h.p.” for short) – we mean that,
with probability at least 1 − δ (e.g., 0.95) for some constant δ
(e.g., 0.05), our estimation is an ε-approximation. For a fixed er-
ror bound ε, there is a tradeoff between the sample sizes/processing
costs (those in “main results” above) and the accuracy probability
1−δ: theoretically, for an accuracy probability 1−δ, there is an ad-
ditional factor log(1/δ) behind the O(·) notations about the sample
sizes/processing costs. However, since δ does not have to be arbi-
trarily small, we can treat log(1/δ) as a constant for simplicity of
presentation. So in all O(·) or Ω(·) notations in the main body of
this paper, we omit all the small logarithmic terms like log(1/δ)
and log(1/ε) when presenting theoretical results. These terms will
be found in the proofs of our theorems in the appendix.

3.2 System Architecture
The architecture of our system is in Figure 2. Our system can be

attached to a database with its independent storage and query pro-
cessing engine. It connects to a data source in the column-based
format using a component called data connector, which can be
customized for different database systems. In the index building
stage, the three of indexes, data bubbles, measure-augmented in-
verted index, and low-frequency group index, are created from the
column-based storage. After index building is finished, our query
processor needs to access the data bubbles (in memory) and the
other two indexes (on disk) to process aggregation queries.
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n
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Low-frequency
group index

(n rows)

Figure 2: System Architecture

Input: aggregation query Q(G, F (M),P) and sample T ′

Output: ε-approximate answer x̂ and support supx̂

1: x̂← 0; supx̂ ← 0;
2: For each sample row t ∈ T ′:
3: If t satisfies P then
4: Let i be the group t belonging to on G;
5: x̂i ← x̂i + 1; supx̂ ← supx̂ +1;
6: Normalize x̂ to be a distribution on all groups on G;
7: Output (x̂, supx̂).

Algorithm 2: ProcessWithDataBubble(Q,T ′): processing ag-
gregation queries with a data bubble (sample)

4. SAMPLE: UNIFORM OR BIASED
We now introduce the two sampling schemes, uniform sampling

and measure-biased sampling, and how to use them to answer large
COUNT and SUM-queries with ε-approximation, respectively.

4.1 Uniform Sampling
Uniform sampling is a very natural idea to approximate the an-

swer distribution x for an aggregation query Q. The sampling pro-
cess can be formally described as follows. For a given sample size
m, we repeat drawing a row with replacement from a table T for
m times – each row t ∈ T is chosen into T 0 with equal probability

Pr [t is picked] = 1/n. (3)

The resulting m sample rows in T 0 are stored in memory for pro-
cessing queries. We show that a pre-drawn uniform sample with
size O

(√
n/ε2

)
suffices for all large COUNT-queries against T .

Algorithm 2 shows how the uniform sample T 0 can be used to
estimate answers to aggregation queries. When Q(G, COUNT(∗),
P) comes, we process it with T 0 using one scan. For each row t ∈
T 0, we check whether t satisfies P (line 3); if yes and t belongs to
the ith group on group-by columns G, we increase x̂i by 1 (lines 4-
5). Finally, we normalize x̂ = 〈x̂1, . . . , x̂r〉 as a distribution and
also report the number of rows satisfying P as supx̂ (lines 6-7).

The follow theorem formally shows that why T 0 with sample
size O

(√
n/ε2

)
suffices for all large COUNT-queries.

THEOREM 3. (Precision of Uniform Sampling) We use uniform
sampling to draw O

(
(1/s0) · (1/ε2)

)
rows to form a sample T 0

from a table T of n rows. For any COUNT-aggregation query on
T , Q(G,COUNT(∗),P), let x be the exact answer to Q. If the
selectivity of predicates P is no less than s0, s(P) ≥ s0, Algo-
rithm 2 uses T 0 to calculate an estimated answer x̂ s.t. with high
probability, ‖x− x̂‖2 ≤ ε. In particular, if the selectivity threshold
s0 = 1/

√
n, a uniform sample of O

(√
n/ε2

)
rows suffices.

A special case of Theorem 3 with selectivity threshold s0 = 1
has been studied in [1], as stated in Corollary 4 below. Our proof

of Theorem 3 generalizes it extensively from two aspects: i) to
show E

[
‖x− x̂‖22

]
≤ O

(
ε2
)
, we need to utilize the fact that the

number of sample rows satisfying P , denoted as mP , concentrates
on Ω

(
1/ε2

)
(w.h.p.); and ii) we need to generalize McDiarmid’s

inequality to complete the proof for ‖x− x̂‖2 ≤ ε (w.h.p.).

COROLLARY 4. (Without Predicate [1]) We use uniform sam-
pling to draw O

(
1/ε2

)
rows T 0 from a table T of n rows. For any

aggregation query Q with COUNT aggregate on T and no predi-
cate, let x be the exact answer to Q. We can use T 0 to calculate an
estimated answer x̂ s.t. with high probability, ‖x− x̂‖2 ≤ ε.

Optimality. The information-theoretic lower bound in [1] also im-
plies the optimal sampling size for COUNT, i.e., at least Ω

(
1/ε2

)
sample rows are needed to obtain an ε-approximate answer (with
probability at least 1− δ) for a COUNT-query with no predicate.
Early termination. We can derive an early termination condition
for Algorithm 2 from Corollary 4. In order to be an ε-approximate
distribution answer to a query Q, x̂ needs a sample of O

(
1/ε2

)
rows among all rows that satisfyQ’s predicate. So we can track the
size of this sample using supx̂ in Algorithm 2. When supx̂ ≥ 2/ε2,
we can exit the loop of lines 2-5 and output the normalized x̂.
We have integrated this early termination condition in our imple-
mentation. It offers significant performance gain for large queries
whose selectivities s(P)’s are much larger than 1/

√
n, as for those

queries, only a small portion of rows in the O
(√
n/ε2

)
-sample

need to be scanned to get a sample of 2/ε2 rows satisfying P .

4.2 Measure-biased Sampling
To extend the uniform sampling schema for queries with SUM

aggregates on any measure dimension M , a naive way is to change
“x̂i ← x̂i + 1” to “x̂i ← x̂i + tM” on line 5 of Algorithm 2
(recall that tM is the value of measure M on a row t). This simple
extension, however, is not accurate enough. We can show that using
a uniform sample with sizem = O

(√
n/ε2

)
, the expected squared

error E
[
‖x− x̂‖22

]
for large queries is no less than Var [M ] · ε2,

where Var [M ] = 1
n

∑
t∈T (tM/M̄ − 1)2 and M̄ is the average

value of measure M . Later in Proposition 7, we will also prove
that E

[
‖x− x̂‖22

]
is upper bounded by O

(
∆3 · ε2

)
with the same

sample size, if measure M takes value in [1,∆]. Both Var [M ]
and ∆ could be very large for a general data distribution on M .

Recall cases I and II in Example 1.1. If we use the above naive
adaption of uniform sampling to process query Q, we will get an
estimated answer either in Figure 1(c) or in 1(d) with high proba-
bility. Both are far away from the true answer.

We now introduce a new sampling schema called measure-biased
sampling. For each measure M , we first need to construct (ran-
domly) a measure-biased sample TM in preprocessing, which will
be used to estimate answers for SUM-queries with high accuracy.
Constructing measure-biased samples. To construct TM with
a given sample size m, we repeat drawing a row with replacement
from T form times – each row t is picked into TM with probability
proportional to its value tM on measure M , i.e.,

Pr [t is picked] =
tM∑
t′∈T t

′
M

∼ tM ; (4)

All the rows drawn are kept in TM . Note that each row may appear
multiple times in TM , i.e., TM could be a multi-set. We will show
that for a table T with n rows, a measure-biased sample TM with
size O

(√
n/ε2

)
suffices for all large SUM(M)-queries.

If there are dmeasure attributes, we need to maintain dmeasure-
biased samples, each for one measure. We can construct all the
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measure-biased samples together with the uniform sample in two
scans of the table T . Please refer to Appendix B for details.
Estimating using measure-biased samples. When using TM to
estimate the answer for a SUM(M)-query Q, it is a bit surprising
that we can reuse Algorithm 2 – we only need to call the procedure
ProcessWithDataBubble(Q,TM ). Readers may wonder why in
line 5, x̂i is increased by 1 instead of the measure value tM for a
sample row t. The reason is, informally, that since the sampling
probability of t is proportional to tM (as in (4)), we need to cali-
brate row t’s contribution to the estimation x̂ with t−1

M . This idea is
similar to Horvitz-Thompson estimator (which is for single-point
estimation), but here we are estimating a distribution x. Refer to
the following example for more intuition.

EXAMPLE 4.1. (Continue Example 1.1) Let’s look at the query
Q in Example 1.1, for which uniform sample fails. We draw a
measure-biased sample TM with rows 1, 26, 51, 76, 92, 94, 96,
98, 111, 136, 161, and 186 each appearing once, and 199 and 200
each appearing four times (considering their values onM – refer to
Example B.1 and Figure 9 in Appendix B on how they were drawn).
Reusing Algorithm 2, call ProcessWithDataBubble(Q,TM ) – the
estimation it gives is x̂ = 〈8/20, 12/20〉 = 〈0.40, 0.60〉, which is
very close to the exact answer x = 〈0.39, 0.61〉.

The following theorem formally shows that, for each measure
M , a measure-biased sample TM with size O

(√
n/ε2

)
suffices for

all large SUM(M)-queries to give ε-approximation.

THEOREM 5. (Precision of Measure-Biased Sampling) We ap-
ply measure-biased sampling on measure attribute M and draw
O
(
(1/s0) · (1/ε2)

)
rows TM from a table T of n rows. For any

aggregation query, Q(G, SUM(M), P), with aggregate SUM(M)
on T , let x be the exact answer to Q. If the measure selectiv-
ity of predicates P , sM (P), is no less than s0, Algorithm 2 uses
TM to calculate an estimated answer x̂ s.t. with high probability,
‖x−x̂‖2 ≤ ε. In particular, if the selectivity threshold s0 = 1/

√
n,

a measure-biased sample of O
(√
n/ε2

)
rows suffices.

Optimality of measure-biased sampling. Our measure-biased
sampling for SUM-queries draws the same number of sample rows
as the uniform sampling does for COUNT-queries. Since COUNT
is a special case of SUM (when the measure attribute is a constant
1), the low-bound result in [1] also implies that for SUM-queries
with no predicate (s0 = 1), we need at least Ω

(
1/ε2

)
sample rows

to obtain an ε-approximate answer with high probability.
Early termination. The same early termination condition intro-
duced in Section 4.1 for the uniform samples can be applied here
for measure-biased samples. When we collect supx̂ ≥ 2/ε2 sam-
ples rows that satisfy the predicate in Q, we can exit the loop of
lines 2-5 of Algorithm 2 and output the normalized x̂. This condi-
tion is also integrated in our implementation and offers significant
performance gain for queries with high measure selectivities.

5. SEEK: RANDOM OR SEQUENTIAL
Large queries with (measure) selectivity no smaller than s0 (=

1/
√
n by default) have been handled by uniform and measure-

biased samples. So what left here are small queries with (measure)
selectivity smaller than s0. For example, for such a small COUNT
aggregation query, we know that the number of rows satisfying its
predicate is no more than

√
n. We will keep this property in mind

when designing the two indexes to handle small queries.

5.1 Measure-Augmented Inverted Index
As we first focus on aggregation queries with categorical dimen-

sions in their predicates, it is a natural idea to apply inverted indexes
from IR systems in our problem. For each value v of each dimen-
sion Di, we can keep a postings list of rows that have value v on
dimension Di. Then for a query Q(G, F (M),P), there have been
extensive studies on how to efficiently retrieve all rows satisfying
P using those postings lists, such as [8]. For a predicate that is a
conjunction (with only ANDs) of equi-constraints, it is equivalent
to computing the intersection of postings lists. After that, we only
need to scan the retrieved rows once for aggregation.

There are, however, at least two optimizations we can do in the
scenario of aggregation queries processing. First, we cannot keep
full rows in the postings list, as each row could be wide (in terms
of the number of bits), especially if the number of dimensions is
non-trivial (e.g., 30). We can keep only the IDs of those rows, and
later seek their dimension/measure values in the original table.

Secondly, of course, random seek based on row ID is expensive.
Our basic idea is that, after we get the IDs of rows that satisfy the
predicate P , we draw a random sample from these IDs, and per-
form random seeks only for the sample IDs. The two sampling
schemes introduced in Section 4 can be applied here online to draw
proper samples to achieve our ε-approximation precision guaran-
tee. To this end, besides row IDs, we need approximate measure
values to guide our online measure-biased sampling.

We introduce how to construct and utilize measure-augmented
inverted index in this subsection.

5.1.1 Construction
Our measure-augmented inverted index is described in Figure 3.

For each value v of a categorical dimension D, we maintain a
measure-augmented postings list inv(D, v). Each of our measure-
augmented postings lists consists of two parts.

First, inv(D, v) maintains IDs of rows that have value v on D
just as in an IR-style postings list. This part is depicted in the left
of Figure 3. From the ID of a row t, denoted as tID, we can access
the value of each the dimension or measure of t from our column-
based storage, using one random seek (I/O).

Second, let’s use inv(D, v) also to denote the set of rows that
have value v on D. For each row t ∈ inv(D, v), we maintain the
values of measuresM1, . . . ,MdM on this row. Note that keeping all
the exact measure values is still too expensive (e.g., for ten 64-bit
integers). So we only keep an approximation apx(tMi) of measure
tMi in order to save the space as well as to speedup the access of
inv(D, v). apx(tMi) only needs to be an 2-approximation of tMi :

apx(tMi) ≤ tMi < 2 · apx(tMi). (5)

So the number of bits we need is at most log log ∆(Mi)+1, where
∆(Mi) is the range of values in measure Mi.

The construction of measure-augmented inverted index is similar
to constructing traditional IR inverted index, which can be done
within one scan of all the rows in linear time.

EXAMPLE 5.1. (Continue Example 1.1) For the example ta-
ble T with 200 rows in Figure 1(a), Figure 4(a)-4(b) shows the
measure-augmented postings lists inv(C2, 0) and inv(C3, 0), re-
spectively. Values on measureM , i.e., tM , are rounded to apx(tM )
as 20, 21, 22, . . ., so that (5) is satisfied. For example, tM for row
100 is rounded to 8 from 10 in inv(C3, 0) and tM for row 200 is
rounded to 64 from 100 in inv(C2, 0). The number of bits needed
for each apx(tM ) is log2 log2 ∆(M) + 1. In this example, the
range of M is ∆(M) = 100, so we need only log2 log2 100 + 1 =
log2 6 + 1 = 3 bits, as apx(tM ) can only be 20, 21, . . . , 26.
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Figure 3: Measure-Augmented Inverted Index

ID apx(M)

1 1
. . . 1
90 1
101 1
. . . 1
198 1
199 64
200 64

(a) inv(C2, 0)

ID apx(M)

1 1
. . . 1
90 1
91 8
. . . 8
100 8
101 1
. . . 1
198 1
199 64

(b) inv(C3, 0)

ID apx(M)

1 1
. . . 1
90 1
101 1
. . . 1
198 1
199 64

(c) inv(C2, 0) ∩ inv(C3, 0)

Figure 4: Two Measure-Augmented Postings Lists

Size of index. Our measure-augmented inverted index is composed
of row IDs and approximate measures. Suppose a table has n rows
and dC dimensions. Each row ID needs O(logn) bits and is stored
dC times in the index, one time for each dimension. For each row
ID and each measure Mi, we need O(log log ∆(Mi)) bits to store
the approximate measure apx(tMi). So the index size is:

THEOREM 6. For a table with n rows, dC dimensions, and dM
measures, the measure-augmented inverted index needs a total of
O
(
n · dC · (logn+ Σ

dM
i=1 log log ∆(Mi))

)
bits.

Each postings list inv(D, v) can be compressed using standard
techniques as it will only be accessed sequentially. We will report
the actual size of such indexes in our experiments.

5.1.2 Processing Queries
To process a query Q(G, F (M),P) using measure-augmented

inverted index, we first retrieve IDs of all rows that satisfy P . Let
TP be the set of all such rows, and T ID

P be the set of their IDs. For
a predicate expression with AND, OR, and NOT operators on equi-
constraints in the form of “Di = vi”, this is equivalent to comput-
ing set intersection, union, and minus of postings lists inv(Di, vi),
and we only need one scan of those lists.

After we get IDs of rows in T ID
P , we can seek the original table

T for their dimension and measure values to finish the aggregation.
But |T ID

P | random seeks are expensive.
A very natural idea is to draw a random sample from T ID

P , and
perform random seeks only for the sample rows.

For COUNT aggregates, from Corollary 4, a uniform sample of
O
(
1/ε2

)
rows suffice for an ε-approximate answer x̂.

For SUM aggregates, we propose approximate measure-biased
sampling to estimate an ε-approximate answer.
Online approximate measure-biased sampling. We start with a
proposition about the sample size needed for an ε-approximation if
uniform sampling is used. We prove that, with uniform sampling,
it suffices to seek O

(
∆3/ε2

)
sample rows, where ∆ is the range

of measure values. This result itself is discouraging as ∆3 is large.
Our approximate measure-biased sampling scheme will improve
the sample size to O

(
1/ε2

)
using approximate measures apx(·M ).

PROPOSITION 7. (Uniform Sample for SUM) We draw a uni-
form sample of O

(
∆3/ε2

)
rows T ′P from TP , assuming values of

Input: aggregation query Q(G, F (M),P) and table T
Index: measure-augmented inverted index inv
Output: ε-approximate answer distribution x̂
1: x̂← 0;
2: Compute T ID

P ← {tID | rows t that satisfy P} using inv;
3: Repeat min{1/ε2, |T ID

P |} times:
4: Randomly pick tID ∈ T ID

P : for each tID ∈ T ID
P ,

Pr [tID is picked] =
apx(tM )∑
t′∈T apx(t′M )

∼ apx(tM ); (6)

5: t← seeking T using tID for other dimensions;
6: Let i be the group t belonging to on G;
7: x̂i ← x̂i + tM/apx(tM );
8: Normalize x̂ to be a distribution and output x̂.

Algorithm 3: ProcessWithMAIndex(Q): online approximate
measure-biased sampling and processing

measureM are within range [1,∆]. For a SUM aggregation query
Q with predicate P , let x be the exact answer toQ. We can use T ′P
to get an estimation x̂ s.t. E [‖x− x̂‖2] ≤ ε.

How to process a query using the approximate measure-biased
sampling technique is described in Algorithm 3. Inspired by the
idea of measure-biased sampling (recall (4)), the sample size can
be reduced tremendously to O

(
1/ε2

)
if rows in TP can be sam-

pled with probability proportional to tM . In measure-augmented
inverted index, tM is not available, but an approximation to tM ,
apx(tM ), is available. A row t in TP is drawn into sample T ′P
with probability proportional to apx(tM ) (line 4). If t is picked, we
retrieve its dimension and measure values by seeking our column-
based storage (line 5), and let i be the group it belongs to (lines 6).
Let tM′ = tM/apx(tM ) be the weight of t in the estimation x̂i
(line 7). Finally, x̂ is normalized and output (line 8). We know
that, for any t, 1 ≤ tM′ < 2, from how apx(·M ) is chosen as in
(5). The reduction in sampling complexity is achieved by shrink-
ing ∆ in Proposition 7. Intuitively, from Proposition 7, if ∆ = 2,
which is true for tM′ , a sample of size O

(
1/ε2

)
should suffice. Be-

fore proving the formal result in Theorem 8, we use an example to
demonstrate the online approximate measure-biased sampling.

EXAMPLE 5.2. (Continue Example 5.1) For the table T with
200 rows in Figure 1(a), consider such a query Q:

SELECT C1, SUM(M) FROM T
WHERE C2 = 0 AND C3 = 0 GROUP BY C1.

The answer x = 〈90/288, 198/288〉 = 〈0.31, 0.69〉. Using our
measure-augmented postings lists in Figures 4(a)-4(b), we can first
compute the IDs of rows that satisfy “C2 = 0 AND C3 = 0”.
We get T ID

P = {1, . . . , 90, 101, . . . , 198, 199} as in Figure 4(c).
There are 188 rows in T ID

P with apx(tM ) = 1, and 1 row (199)
with apx(tM ) = 64. So if we draw 20 rows with probability pro-
portional to apx(tM ) from T ID

P , with high likelihood, we will get 7
rows from {1, . . . , 90}, 8 rows from {101, . . . , 198}, 5 copies of
row 199. From line 7 in Algorithm 3, we can estimate x̂ =

〈 7× 1

7 + 8 + 5× 100/64
,

8× 1 + 5× 100/64

7 + 8 + 5× 100/64
〉 = 〈0.30, 0.70〉.

THEOREM 8. (Sample using Approximate Measures) We can
draw O

(
1/ε2

)
rows T ′P from TP biased on approximate measure

apx(·M ) of M (in (6)). For an aggregation query Q(G, SUM(M),
P), let x be the exact answer to Q. We can use the measure-
biased sample T ′P to calculate an approximate answer x̂ (as in
Algorithm 3) s.t. with high probability, we have ‖x− x̂‖2 ≤ ε.
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Query processing cost. We observe the bottleneck in cost lies on
the second step, because the first step only involves sequential scans
of postings lists, but the second step needs random seeks. The num-
ber of random seeks, however, is bounded by min{1/ε2, |T ID

P |} for
each dimension in the query to get an ε-approximation.

THEOREM 9. A query Q with predicate P can be processed
using our measure-augmented inverted index (with Algorithm 3) to
get an ε-approximation. Let TP be the set of rows satisfyingP . The
total number of random seeks to our index and the column-based
storage is O

(
min{1/ε2, |TP |} · dQ

)
, where dQ is the number of

dimensions and measures in the query Q.

5.2 Low-Frequency Group Index
Low-frequency group index is designed to benefit a special class

of predicates in the form of

P : D1 = v1 AND . . . ANDDl = vl AND (. . .), (7)

i.e., a conjunction of one or more equi-constraints and some other
constraints. For example, for table T in Figure 1(a), “C2 = 1 AND
(C3 = 0 OR C3 = 1)” is such a predicate.

The construction and processing using low-frequency group in-
dex is quite straightforward. If there is less than

√
n rows (out of

all the n rows in the table T ) with value v on a dimension D, we
simply store these rows sequentially in the index. Any query in the
form (7) with “D = v” in its predicate is a small query and cannot
be handled by our samples. Processing such queries using the low-
frequency group index is easy: we only need to scan the

√
n rows

sequentially in the index. More details are in Appendix C.
Not all small queries can be processed using this index. For ex-

ample, when TD1=v1 and TD2=v2 are both large (with >
√
n rows

and thus not in the index), their intersection TD1=v1 ∩ TD2=v2

could be small. We still rely on our measure-augmented inverted in-
dex to answer the query with predicate “D1 = v1 ANDD2 = v2”.

6. EXTENSIONS

6.1 From Distributions to Absolute Answers
We now introduce how to convert a distribution answer x̂ to an

absolute answer ẑ. For the distribution answer obtained from low-
frequency group index, since it is exact, the conversion is trivial. So
let’s focus on SUM-queries with estimated distribution obtained
from measure-biased sampling. Measure-augmented inverted in-
dex also relies on (approximate) measure-biased sampling, so it is
similar. And COUNT is a special case of SUM.

Consider a SUM(M)-query Q with predicate P against a table
T . Suppose its output is z = 〈z1, . . . , zr〉, where zi is the aggre-
gate value of the ith group. z can be normalized to a distribution
x = 〈x1, . . . , xr〉 as in Section 2.1. Let TP ⊆ T be the set of rows
satisfying P and Ti ⊆ TP be the set of rows in the ith group of the
output to Q. For a set of rows S, let M(S) =

∑
t∈S tM . So we

can easily derive that xi = M(Ti)/M(TP) = zi/M(TP).
In the measure-biased sample TM , let m be the number of sam-

ple rows in TM , mP be the number of sample rows satisfying P
in TM , and mi be the be the number of rows belonging to the ith
group in TM . So from Algorithm 2, we have x̂i = mi/mP .

Since |x̂i − xi| ≤ ε (implied by our distribution precision guar-
antee ‖x− x̂‖2 ≤ ε), informally, we have

xi = zi/M(TP) ≈ mi/mP = x̂i.

So it is intuitive to estimate ẑi = M(TP) ·mi/mP . Both mi and
mP are known from Algorithm 2, but M(TP) is unknown. Alter-

Input: aggregation query Q(G, F (M),P) and sample T ′

1: Ŝi ← ∅ for all groups i’s; sup← 0;
2: For each sample row t ∈ T ′:
3: If t satisfies P then
4: Let i be the group t belonging to on G;
5: Ŝi ← Ŝi ∪ {t}; w(t)← Pr [t ∈ T ′]; sup← sup +1;
6: For each group i: x̂i ← Estimator(Ŝi,w(·), F );
7: Output (x̂, sup).

Algorithm 4: ProcessWithDataBubble(Q,T ′): extended for
general measure F on uniform/measure-based sample

Input: aggregation query Q(G, F (M),P) and table T
Index: measure-augmented index MAInd

1: Ŝi ← ∅ for all groups i’s;
2: Compute T ID

P ← {tID | rows t that satisfy P} using MAInd;
3: Repeat min{1/ε2, |T ID

P |} times:
4: Randomly pick tID ∈ T ID

P : for each tID ∈ T ID
P ,

5: If MeasureBiased = true: Pr [tID] ∼ apx(tM );
6: Else (uniform sampling): Pr [tID] = 1/|T ID

P |;
7: t← seeking T using tID for other dimensions;
8: Let i be the group t belonging to on G;
9: Ŝi ← Ŝi ∪ {t}; w(t)← Pr [tID];

10: For each group i: x̂i ← Estimator(Ŝi,w(·), F );
11: Output x̂.

Algorithm 5: ProcessWithMAIndex(Q,MeasureBiased): ex-
tended for general measure F on uniform/measure-based sample

natively, we can estimateM(TP) asM(T )·mP/m, and therefore,

ẑi = M(T ) ·mi/m = x̂i ·M(T ) ·mP/m.

Negative values on measures. For a measure attribute M with
both positive values and negative values, we can create two versions
ofM : M+ takes only positive values and is set to 0 if the row has a
negative value onM ; and similarly,M− takes only negative values
and is set to 0 if the row has a positive value onM . Using the above
tricks, we can get estimated answers for both M+ and M−. The
estimation for M can be obtained from the difference between the
estimated M+ and M− on each group. In this way, we can at least
handle negative values for both SUM and AVG.

6.2 Extensibility of Our Techniques
Foreign key joins and star schema. In order for our system to
support aggregate queries with foreign key joins in a star schema,
our samples and indexes can be extended as follows.

Uniform/measure-biased samples are drawn from the fact table
in the same way as introduced in Section 4. But for each dimen-
sion table, we have two options. i) We can join it with the sam-
ples from the fact table in the offline sampling stage and attach the
additional dimensions to the samples; or ii) we can perform the
join when processing aggregation queries using samples, if one or
more of its dimensions appear in the query. Option ii) is feasible
when the dimension table is small enough to be fit into the mem-
ory. In our implementation, we choose option i). For the complex
schema in TPC-H, Table 1 shows the space overhead of all uniform
and measure-biased samples, which is affordable in memory even
though samples are attached with dimensions from all tables.

For the measure-augmented inverted index and the low-frequency
group index, we construct them in the view that joins the fact table
with all the dimensions. For TPC-H, Table 1 shows their total sizes.
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In a snowflake schema with multiple fact tables and multi-level
dimensions, the above extensions can still be applied.
Range predicates. Our samples can already be used to handle any
predicate that is based on existing dimensions. To handle range
predicates like “D ≥ s AND D ≤ t” for small queries, we intro-
duce the following measure-augmented B+ tree index.
• Measure-augmented B+ tree. In a B+ tree built on a numerical
dimension D, each leaf node is associated with a list of D’s values
within certain range. In our measure-augmented B+ tree, for each
D’s value at each leaf, we associate it with IDs (pointers) of the
rows with this value on D and also approximate measure apx(tM )
for each measure (as in (5)) of these rows – recall that these approx-
imate measures need much less bits than the exact measure values.

When a range constraint s ≤ D ≤ t is in the predicate, we
can use this measure-augmented B+ tree to retrieve IDs of rows
with s ≤ tD ≤ t as well as their approximate measures. Our
approximate measure-biased sampling introduced in Section 5.1.2
can then be used to pick O

(
1/ε2

)
row IDs and seek their dimension

values in the original table to answer a query with ε-approximation.
Extension for other aggregates. We now focus on how to extend
our sample+seek solution to a wide range of aggregates.
• Simple extensions. We can convert both estimated distributions
for SUM and COUNT to absolute answers using the way intro-
duced in Section 6.1. Then some measure like AVG can be easily
supported as it is nothing but the ratio of SUM to COUNT.
• Generic aggregates. To support a generic range of aggregates in
Algorithm 1, we extend processing with uniform/measure-biased
samples (Algorithm 2) and processing with measure-augmented in-
dex (Algorithm 3) to Algorithm 4 and Algorithm 5, respectively.
Processing with low-frequency group index is trivial: one can get
the exact value of any aggregate by scanning rows in the index.

The main idea behind Algorithms 4-5 is that, no matter with
i) uniform/measure-biased samples or ii) with measure-augmented
indexes, our estimations are made based on a set of sample rows
with different sampling probabilities. For each group in the answer,
with i), sample rows have been pre-drawn and kept in memory, so
Algorithm 2 can directly use them. With ii), Algorithm 3 does
online sampling/seeking in lines 4-5, and make use of the sample
rows for estimation in lines 6-7. So it is intuitive to replace the spe-
cific estimation methods in Algorithm 2 (lines 4-5) and Algorithm 3
(lines 6-7) with generic estimators to handle other aggregates.

In Algorithm 4, when scanning rows in a (uniform or measure-
biased) sample T ′, we keep rows from each group i in Ŝi as well as
the probability of seeing each row t in w(t) (line 5). After the scan,
for each group i, a point estimation of its aggregate F can be made
based on the set of sample rows Ŝi from group i and their weights
w(·), using a generic estimator Estimator(Ŝi,w(·), F ) (line 6).

The extension in Algorithm 5 is similar, but the sampling is
conducted online, either uniformly (line 6) or biased on measure
(line 5). Again, rows collected from sampling are kept in Ŝi for
group i together with sampling probabilities in w(·) (line 9). Af-
ter enough number of rows are collected, estimation of aggregate
value F for each group can be made using Estimator(Ŝi,w(·), F ).

Estimator is a customizable component and any sample-based
point estimator for the aggregate F can be applied. It takes a set of
sample rows Ŝ, their sampling weightsw(·), and F as the input, but
does not rely on other components of our system. So our solution
enjoys the same extensibility as other sampling-based AQP tech-
niques (e.g. [7, 5]) do to support a generic range of aggregates. For
example, if F is STDEV(M), the sample standard deviation esti-
mator can be used as Estimator; if F is COUNT(DISTINCTM),
the estimator GEE proposed in [10] can be used as Estimator.

We will evaluate such extensions in experiments.

7. EVALUATION
We compare our system with a commercial RDB and two state

of the art AQP solutions with stratified sampling: Babcock et al.
[7] (workload-independent) and BlinkDB [5] (workload-aware).
• SPS: Our sample+seek solution introduced in this paper.
•DBX: A standard commercial database system with column-store
indexes built for all tables on all columns.1

• SMG: Small group sampling introduced in [7].
• BLK: BlinkDB with multi-dim stratified sampling [5].
More implementation details of SPS.
• Parameters. Our SPS has two parameters. The selectivity thresh-
old s0 is set to 1/

√
n, where n is the total number of rows in a

table. The requested error bound ε varies from 0.025 to 0.1, and is
set as 0.05 if not specified. We use constants 1 behind all O(·)’s in
our theoretical results. For uniform/measure-biased sampling, our
analysis shows that O

(√
n/ε2

)
rows in each sample suffice – we

pick exactly
√
n/ε2 rows for each sample. Similarly, from Theo-

rem 8, we pick exactly 1/ε2 rows to perform random seeks.
• Independent storage. We implement our storage/index and query
execution engine in SPS using C# from sketch. Our custom imple-
mentation (of all the components in Figure 2 except “data source”)
does not reply on other database systems. In our system architec-
ture in Figure 2, we have the original data kept in a column-based
storage with dictionary compression on disk. Our samples/indexes
are constructed from it, with samples loaded into memory and the
other two types of indexes maintained on disk. DBX has a better
optimized column-based storage engine – we do not utilize it for
SPS, as we want to highlight the speedups brought by our sam-
ples/indexes and processing algorithms with early termination.
• Column-store v.s. row-store. Our sample+seek framework is
independent on the actual data storage of tables, but we choose
column-store for uniform/measure-biased samples, and row-store
for low-frequency group indexes based on the ways they are ac-
cessed. For in-memory samples, a query may touch only a few di-
mensions of sample rows and only data on these dimensions need
to be read. So to take the best advantage of data locality and cache,
it is more efficient to store the data column by column. For on-
disk low-frequency group indexes, since at most

√
n rows need to

be scanned to answer a query, it is more efficient to store the data
row by row so that only one random access is required per query.
Dictionary compression is applied on both types of storages.

SMG and BLK are implemented on the same storage engine (to
store data and samples) as SPS, and all the samples from SMG
and BLK are pre-loaded into memory for fair comparison.

7.1 Experiment Settings and Summary
All of our experiments are conducted on a Windows server with

8 core 2.27GHz CPUs and 64 GB memory. DBX is given 4 cores
for better performance, and each of the rest uses one core.
Datasets. We use two datasets (a real one and a benchmark):
• LOG: This is a real dataset about service logs in a Fortune 500

company. It is a single table with 29 columns – 19 of them are
categorical dimensions (for group-by), and the rest 10 are numer-
ical dimensions/measures. The numbers of distinct values in the
categorical dimensions range from 2 to 3000. The whole table
has 1.12 billion rows. To test the scalability of different systems,
we extract two sub-tables from LOG, LOG-S with 310 million
rows and LOG-M with 620 million rows.
• TPC-H: With a scaling factor 100, we produce a 100 GB star-

1We tried different types of indexes. Column-store indexes turn out
to be the best option for our aggregation query workloads.
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Datasets
# of
rows
(n)

Size
on
disk

On-disk indexes In-memory uniform and measure-biased samples (only needed for one ε)
MA index LF index ε = 0.025 ε = 0.050 ε = 0.075 ε = 0.010 time

size time size time budget size budget size budget size budget size
LOG-S 310M 60GB 26GB 0.2h 36GB 0.3h 0.0909 11GB 0.0227 2.8GB 0.0101 1.2GB 0.0056 0.68GB 0.2h
LOG-M 620M 120GB 41GB 0.5h 6GB 0.4h 0.0643 16GB 0.0161 4.1GB 0.0071 1.8Gb 0.0040 1.1GB 0.4h

LOG 1120M 202GB 70GB 1.0h 8GB 0.7h 0.0478 22GB 0.0120 5.5GB 0.0053 2.4GB 0.0030 1.4GB 0.7h
TPC-H 600M 100GB 62GB 0.6h 6GB 0.4h 0.0653 15GB 0.0163 3.8GB 0.0073 1.7GB 0.0041 0.94GB 0.5h

Table 1: Data size and error bound v.s. sampling budget, sample sizes, and index sizes
schema database using TPC-H benchmark, in which the fact ta-
ble LINEITEM has a total of 600 million rows.

Workloads. For both datasets, we randomly generate workloads
of aggregation queries with predicates, group-bys, and aggregates,
and foreign key joins (in TPC-H). We vary the number of group-by
columns from 1 to 4 and the number of dimensions in predicates
from 0 to 4. COUNT/SUM aggregates are used for experiments in
Sections 7.3-7.4. SUM and COUNT(DISTINCT ·) are tested in
Section 7.5. In each aggregation query, the measure M involved
is chosen randomly from all the measures. Group-by dimensions
and predicate dimensions are chosen uniformly at random from all
the categorical dimensions in all tables, with key/id columns ex-
cluded (as they are not likely to appear in aggregation queries). In
Sections 7.3-7.4, a predicate consists of 0 to 4 (dimension, value)
pairs, which represent conjunction (ANDs) of constraints “D =
v” – v is picked randomly from all values of dimension D. More
complex predicate types are tested in Section 7.5.

There are 20 such workloads: each one W.X.Y (X = 1, 2, 3, 4
and Y = 0, 1, 2, 3, 4) is the set of queries with X group-by dimen-
sions and Y predicate dimensions generated in the above way. We
randomly generate 50 queries for each workload W.X.Y. Note that
for TPC-H, our workloads are different from the standard TPC-H
queries, in order to mimic real-world analytical workloads and to
cover more column combinations for each workload. Each stan-
dard TPC-H benchmark query (if it is an aggregation query) only
covers one particular combination of dimensions and values.2

Performance metrics. We report both Response Time (ms) and
Speedup of aggregation query processing in different system. Re-
sponse time is the time to processing a query. Speedup is the rela-
tive ratio of response time in two systems.
Error metrics. We use the L2 distance between the normalized es-
timated answer and the true one, ‖x− x̂‖2, to measure the Error in
answers produced by different systems. For the ease of understand-
ing, please refer to (2) in Section 2.2 for a more concrete form.

Parameter ε in our system specifies Requested Error, but the Ac-
tual Error of answers produced by AQP systems could be different.
Summary of results. We report the cost of constructing and stor-
ing samples and indexes in Section 7.2. We compare our SPS with
DBX in Section 7.3. The actual error in answers produced by SPS
is almost always lower than the requested error bound (specified by
ε). When ε is 5%, SPS achieve a speedup of 100x for 90% of the
queries in our workloads. For very selective queries, the speedup
is less significant but still around 10x. When compared with other
AQP systems SMG and BLK in Section 7.4, our SPS solution pro-
duces much less error when the response time is similar; and to
produce answers with the same quality, SPS is much faster. The
errors in the estimated answers given by SPS have much smaller
standard deviations, which implies that the error is more likely to
be bounded consistently in SPS. When applied on general aggre-
gates with complex predicates in Section 7.5, our SPS still has the
best performance gain compared to SMG and BLK.

2Although we use TPC-H in our experiments, the queries used in
our experiments are quite different from standard TPC-H bench-
marks. So our results do not reflect TPC-H benchmark numbers.
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Figure 5: Speedup for the whole workload (twenty together)

7.2 Sampling Budget and Index Size
We first report the overhead of our samples/indexes in terms of

both their sizes and construction time in Table 1.
Sampling budget and in-memory samples. Recall that the size
of each sample is function of both the required error bound ε and
the number of rows n, i.e.,

√
n/ε2. The sampling rate or sampling

budget is (
√
n/ε2)/n = (1/

√
n) · (1/ε2). So one property of our

system is that the sampling rate/budget decreases when the data
size increases, which is a significant advantage for “big data.”

The right part of Table 1 gives the sampling budgets (column
“budget”) and the total sizes of uniform and measure-biased sam-
ples (column “size”) for different values of error bound ε in datasets
of different sizes. Dictionary compression is applied on these sam-
ples. Because of the above property about sampling budget, the
sample sizes increase very slowly for larger datasets for fixed ε.
On-disk indexes. Table 1 also gives the size of our measure-
augmented indexes, denoted as “MA index” there. Its size is in-
dependent on the error bound ε, but roughly linear to the data size.
The size of the low-frequency group indexes (“LF index” in Ta-
ble 1) is also independent on ε, but is stable for larger datasets.
This is because the selectivity threshold s0 = 1/

√
n decreases in

larger datasets, so fewer values have “low-frequency.”
The total proportion of samples and indexes to the original data

size decreases for larger datasets (from 1.08 in LOG-S to 0.41 in
LOG for ε = 0.05) – so our solution is more suitable for “big data.”
Construction time. The time needed to build samples and indexes
is independent on the error bound but linear to the data size (#
rows and # columns), as samples and indexes are constructed dur-
ing scans of tables. The building time is reported in Table 1 for
each portion. The total building time (pre-processing) ranges from
0.7 hour for the smallest LOG-S to 2.4 hours for the largest LOG.
Considering that one query in LOG may take several minutes to be
completed in DBX and the performance gain of SPS, the cost of
this one-time building process is reasonable and profitable.

7.3 Performance Gain over DBMS
We compare our SPS solution with a commercial database prod-

uct DBX. For our workloads of aggregation queries, column-store
indexes give the best performance in DBX, and the memory in our
machine is large enough to allow DBX to cache column-store in-
dexes in memory. For TPC-H, we run DBX on a view table that
materializes all the foreign-key joins for DBX’s best performance.

We compare SPS with DBX on all the twenty workloads W.X.Y
(X = 1 . . . 4 and Y = 0 . . . 4) for both COUNT and SUM.

688



100

102

104

2.5 5 7.5 10

Requested error bound ε(%)

S
p
ee
d
u
p

Mean
Median

Top-90%

(a) Speedup over DBX

0

2

4

6

8

2.5 5 7.5 10

Requested error bound ε(%)

A
ct
u
al

er
ro
r
(%

)

(b) Actual error

Figure 6: Varying requested error bound ε (LOG)
Exp-I: Overall speedup. Figure 5 reports the overall speedup
gained in our SPS system over DBX on all the twenty workloads
for SUM aggregates in LOG and TPC-H. The x-axis in Figure 5
is the speedup ratio obtained by each query in our system, and the
y-axis is the percentage of queries that obtain higher speedup. For
example, a point (102, 90) means 90% of all queries are sped up
more than 100 times. We can find that, in both LOG and TPC-H,
90% queries in the workload get around 100x speedup or more, and
the median speedup is over 103x and close to 104x.

The requested error bound ε is set to 0.05 here. As shown in
Exp-II, the actual error is lower than ε most of the time.
Exp-II: Vary requested error bound ε. Such tremendous speedup
is, of course, at the cost of error in the approximate answers pro-
duced by SPS. However, the error can be easily controlled by users
using the parameter ε. We vary the request error bound ε, and report
the speedups in Figure 6(a) and actual errors in Figure 6(b), where
we use all the twenty LOG workloads with SUM aggregates. The
error bounds ε requested by users are varied from 0.025 to 0.1.

Figure 6(a) plots 90-percentile / median / mean speedups. With
larger ε, i.e., if users can tolerate a bit larger error, they can gain
more significant speedups. But even when they request the error to
be no more than ε = 0.025, the median / mean speedup is from 102

to 103. Figures 6(b) plots the average errors together with error bars
representing one standard deviation, which are roughly the ranges
of min/max error, for each ε. The average actual error (even plus
standard deviation) is much lower than the requested error bound.

The speedups and errors for TPC-H have very similar trend to
LOG. And SPS gets even lower actual errors for COUNT work-
loads. So those figures are omitted due to the space constraint.
Additional experiments. Exp-III (vary database size), Exp-IV
(vary selectivity of queries), and Exp-V (vary number of dimen-
sions in queries) are reported in Appendix D.

7.4 Comparing with Stratified Sampling
We compare our AQP system SPS with BLK and SMG. We use

the real dataset LOG-S for this comparison.
Parameters and settings. For both BLK and SMG, we try dif-
ferent values of their parameters and choose the best ones in our
experiments. In SMG, there is a threshold for the size of “small
groups”, and the best value we find in the testing dataset is 2000.
In BLK, the similar parameter K (refer to Section 8 for a brief in-
troduction) is set to be 10000 for the best performance. The space
budget for samples in BLK is set to be 50% of the dataset size (the
same as in [5]) so that we are able to load all the samples of BLK
into memory for the fastest possible processing with these samples.

We give the distribution of the 20 SUM-workloads W.X.Y (X =
1-4 and Y = 0-4) (refer to the definitions Section 7.1) to BLK’s op-
timization module which chooses the best set of stratified samples
to cover them. Then we use the same workloads for comparison.
Comparison results and analysis. BLK can guarantee response
time. For each query, we continuously enlarge the requested re-
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Figure 7: Time-error tradeoff in different systems

sponse time, so that the actual error in its answer can be reduced.
SPS makes such tradeoff between time and error by varying ε and
early termination. Similar tradeoff can be enabled in SMG by ran-
domly permuting rows in the samples of SMG (in the preprocess-
ing), so errors in SMG keep reducing as a query is being evaluated.

The 20 workloads are partitioned into six sets as in Figure 7.
W.X1-X2.Y1-Y2 means all queries in W.X.Y with X = X1 or X2,
and Y = Y1 or Y2. The comparison results for the three are reported
in Figures 7(a)-7(f) for in-depth analysis. In each figure, one point
(x, y) in a chart corresponds to “(the average response time, the
average actual error)” of queries. The actual error is associated
with an error bar with a width of one standard deviation to show
how stable the actual error is for certain requested response time.
• Queries with no predicates. W.1-2.0 and W.3-4.0 (in Fig-
ures 7(a)-7(b)) are queries without predicates. All the three systems
perform reasonably well for them, producing answers with error
less than 0.1 within seconds. It is also obvious that our SPS has
the narrowest error bar and the lowest average error for the same
response time. This is because of our fundamentally different sam-
pling scheme, measure-biased sampling, which produces precision
guarantee independent on the underlying data distribution.
• Queries with predicates. For queries with predicates (the rest
four sub-workloads in Figures 7(c)-7(f)), results about SMG are
not plotted, because either its error is much higher than SPS and
BLK, or its response time is too long. The reason is that SMG’s
small group sampling is a stratified sampling on only one dimen-
sion, so for selective predicates, its stratified samples can only cap-
ture a small number of rows satisfying the predicate, which makes
its estimation inaccurate. We also observe that, SPS outperforms
BLK a lot on error when the response time is similar. This is due
to both our new sampling technique and the novel index structures.
With the help of the indexes, our online sampling only needs 1/ε2
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Figure 8: With complex predicates and general aggregates
random seeks to produce an ε-approximation for any small query.
On the other hand, when only very few rows satisfy a small query’s
predicate, if the predicate’s column set is not covered exactly by
the columns of any stratified sample selected by BLK’s optimiza-
tion module, BLK will suffer from the same problem as SMG (al-
though it happens less frequently than in SMG).

7.5 Extensibility
We conduct experiments on more general workloads (generic ag-

gregates with range constraints and complex logical expressions as
predicates) to evaluate the extensibility of SPS as introduced in
Section 6.2. SPS still outperforms the others on such workloads.

The workloads are generated on LOG-S with 1-4 group-by di-
mensions, and complex logical expressions on 4 dimensions as
predicates, such as “(C1 = v1 OR v′2 ≤ C2 ≤ v′′2 ) AND (C3 =
v3 OR v′4 ≤ C4 ≤ v′′4 )”. We generate two such workloads with
aggregates SUM(M) and COUNT(DISTINCT M), respectively.
We always include 2 equality constraints on categorical dimensions
and 2 range constraints on numerical dimensions in a predicate. For
each of such workloads, dimensions, values, and logical expres-
sions are randomly picked to form 200 queries.

Results for the two workloads are reported in Figure 8. We plot
the average response time of SPS and BLK when achieving certain
actual error, and compare them with DBX (we ignore SMG as it
is dominated by the other two). Overall, our SPS provides much
better tradeoff between time and error than BLK does, and is always
faster than BLK when with the same error.

The performance gain of SPS over BLK and DBX on SUM is
significant (Figure 8(a)) because of the strong theoretical guarantee.
SPS can benefit from measure-biased samples on other aggregates
AVG and STDEV as well even though the theoretical guarantees
are weaker for them. It benefits from our samples and indexes also
on COUNT(DISTINCT M) (Figure 8(b)). So when the error is
above 2% or 1%, SPS is still the best option with significant per-
formance gain and smooth tradeoff between time and accuracy. In
particular, SPS still gets 100x speedup when the error is 5%.

8. RELATED WORK
AQP has been studied extensively during last few decades. There

are three related lines, including i) online sampling – drawing sam-
ples after each query comes, ii) offline sampling – drawing samples
before queries come; and iii) non-sampling based approaches.
Online sampling/aggregation. Online aggregation [19, 14, 24]
streams data in a random order or assumes that sample rows can
be randomly drawn from the underlying database, and uses them
to estimated query answers. The disadvantage is that drawing rows
randomly from the table for each query means many random I/O
accesses, which are costly at query time, resulting in high latency.
Such techniques are orthogonal to our ideas of sampling and build-
ing indexes before queries come, and can be integrated into our
system to provide estimations before index building is finished.

Offline sampling. This line of work is especially relevant to ours.
The idea is to create random samples before queries come, and
calibrate their sampling rates carefully using stratified (or impor-
tance) sampling [22] to reduce variance when using them to an-
swer queries. There are two types of offline sampling techniques:
one calibrates sampling rates without the knowledge of workload;
and the other utilizes historical workload distribution.
• Workload-independent sampling. Aqua [3, 2] proposes con-
gressional sampling. For all possible queries, consider combina-
tions of group-by dimensions. For each combination, the sampling
rate is set based on a weighting function that considers the group
sizes for all subsets of the group-by dimensions in this combina-
tion. For d possible group-by dimensions, there are 2d combina-
tions, which renders it impractical for datasets with dozens or hun-
dreds of possible group-by columns. In addition, Aqua operates on
a single sample which has to be very general-purpose in nature but
only loosely appropriate for any particular query [7].

To overcome such shortcomings, Babcock et al. [7] proposes
small group sampling, a stratified sampling technique that builds
a biased sample on each single column. Uniform sampling does
a satisfactory job at providing good estimates for the large groups
in a group-by query. A group here is the set of all rows with cer-
tain (the same) value on a group-by dimension. For small groups,
uniform sampling fails to draw enough number of rows for each.
So all the rows from the small groups are included in the biased
sample on their dimension. A query is executed on the union of the
uniform sample and all biased samples whose dimensions appear
in the query for an estimated answer. Using similar heuristics, out-
lier indexing [11] is proposed to include rows with outlier values in
additional samples to improve estimation accuracy.
•Workload-aware sampling. Workload information can be used
to optimize samples’ constitution. For example, Aqua [2] can be
adapted to workloads. Workloads are also used in [15] to construct
“self-tuning” biased samples. STRAT [12, 13] aims to minimize
the expected relative error of workloads. [23] requires building a
new sample for each query template. SciBORQ [27] targets scien-
tific analysis and creates samples based on past query results with
no guarantees on error margin. However, the assumption of these
works that workloads are stable can easily be wrong in practice.

BlinkDB [5] abstracts workload to query column set (QCS), i.e.,
the set of columns that appear in a query, allowing it to tolerate
moderate workload change. A group is the set of all rows with
the same values on a QCS. A stratified sample can be created for
each QCS by sampling K rows for each group on this QCS – if a
group has less than K rows, all of its rows are put in the sample.
BlinkDB formulates an optimization problem to decides how to
allocate space budget across QCSs based on previous workloads. It
provides either time guarantee or CI-based error guarantee.

Related work on requested error v.s. actual error, non-sampling
approaches, and other AQP systems is discussed in Appendix E.

9. CONCLUSIONS
We propose an AQP system based on a novel sample+seek frame-

work. Distribution precision is guaranteed in answers to aggre-
gation queries. A new measure-biased sampling technique is in-
troduced to approximately process SUM aggregation queries with
less selective predicates and achieve this precision guarantee. For
queries with more selective predicates, sampling is not enough, and
we propose two novel indexes to aid in-memory samples. The num-
ber of random seeks using our indexes can be bounded to achieve
the same precision guarantee. Thus, our system is efficient for
queries with various selectivities. Our system can extend to sup-
port a generic range of aggregates with complex predicates.
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APPENDIX
A. PROOFS
Proof of Theorem 3. Suppose there are r groups in the answer
x to Q. For each group i ∈ {1, . . . , r}, let ni be the number
of rows belonging to the ith group and satisfying the predicate P ,
and nP be the total number of rows satisfying P . So of course,∑r
i=1 ni = nP and s(P) = nP/n.
We draw a uniform sample of m rows T 0 from T . Similarly,

in the sample T 0, let mi be the number of rows belonging to the
ith group and satisfying the predicate P , and mP be the number of
rows satisfying P .

Consider the answer x toQ and the estimated answer x̂, we have
xi = ni/nP and x̂i = mi/mP . So,

E
[
‖x− x̂‖22

]
= E

[
r∑
i=1

(
ni
nP
− mi

mP

)2
]

(8)

= E

[
n2

m2n2
P

r∑
i=1

(
m · ni

n
−m · nP

n
· mi

mP

)2
]
. (9)

mP can be interpreted as the number of successes inm indepen-
dent Bernoulli trials with success probability nP/n. So E [mP ] =

m · nP/n , m̄P . Similarly, mi can be interpreted as the number
of successes in m independent Bernoulli trials with success proba-
bility ni/n. So E [mi] = m · ni/n , m̄i. From Chernoff bound,
for 0 < ε < 1, we have

Pr [mP ≥ (1 + ε)m̄P ] ≤ e−ε
2m̄P/3, (10)

and Pr [mP ≤ (1− ε)m̄P ] ≤ e−ε
2m̄P/2. (11)

Consider two events: Ein = [(1− ε)m̄P < mP < (1 + ε)m̄P ] and
Eout = [mP ≥ (1 + ε)m̄P ∨ mP ≤ (1 − ε)m̄P ]. We can then
rewrite (9) using conditional probability:

E
[
‖x− x̂‖22

]
= E

[
1

m̄2
P

r∑
i=1

(
m̄i − m̄P ·

mi

mP

)2
]

= (12)

E

[
1

m̄2
P

r∑
i=1

(
m̄i − m̄P ·

mi

mP

)2
∣∣∣∣∣Ein

]
·Pr [Ein] (13)

+ E

[
1

m̄2
P

r∑
i=1

(
m̄i − m̄P ·

mi

mP

)2
∣∣∣∣∣Eout

]
·Pr [Eout] . (14)

Let mP/m̄P = α. (13) can be upper bounded as:

(13) ≤ E

[
1

m̄2
P

r∑
i=1

(
m̄i −

mi

α

)2

∣∣∣∣∣1− ε < α < 1 + ε

]
(15)

≤ max
1−ε<α<1+ε

1

m̄2
P

r∑
i=1

E

[(
m̄i −

mi

α

)2
]

(16)

= max
1−ε<α<1+ε

1

m̄2
P

r∑
i=1

(
1

α2
Var [mi] +

(α− 1)2

α2
m̄2
i

)
(17)

≤ 2

m̄2
P

(
r∑
i=1

Var [mi] +

r∑
i=1

ε2m̄2
i

)
(ε ≤ 0.5 is small). (18)

Since mi is the number of successes in m Bernoulli trials,
r∑
i=1

Var [mi] =

r∑
i=1

m · ni
n
·
(

1− ni
n

)
≤ m · nP

n
= m̄P . (19)
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From Cauchy-Schwarz inequality, we have

r∑
i=1

ε2m̄2
i ≤ ε2

(
r∑
i=1

m̄i

)2

= ε2 · m̄2
P (20)

Putting (19) and (20) back to (18), we have

(13) ≤ 2

m̄P
+ 2ε2. (21)

Now we upper bound (14). From (10) and (11),

Pr [Eout] ≤ e−ε
2m̄P/3 + e−ε

2m̄P/2 ≤ 2e−ε
2m̄P/3. (22)

For the values of mP/m̄P = α in event Eout, we have

E

[
1

m̄2
P

r∑
i=1

(
m̄i − m̄P ·

mi

mP

)2
∣∣∣∣∣Eout

]
(23)

≤ 1

m̄2
P
E

[
r∑
i=1

m̄2
i +

r∑
i=1

(
m̄P ·

mi

mP

)2
]
≤ 2. (24)

where the second inequality of (24) is from Cauchy-Schwarz in-
equality and linearity of expectation. Putting (22) and (24) back to
(14), together with (13) and (21), we have

E
[
‖x− x̂‖22

]
≤ 2

m̄P
+ 2ε2 + 4e−ε

2m̄P/3 ≤ 6ε2, (25)

if m̄P = Ω
(

1
ε2

log 1
ε2

)
, and from Jensen’s inequality,

E [‖x− x̂‖2] ≤
√

E [‖x− x̂‖22] ≤ 3ε. (26)

We can conclude the proof using a generalized McDiarmid’s in-
equality. Rewrite φ(t1, . . . , tm) , ‖x− x̂‖2, where ti is a sample
row from the table T and {ti | i = 1, . . . ,m} are mutually inde-
pendent. Consider a different estimation x̂′ = 〈x̂′1, . . . , x̂′r〉, where
x̂′i = mi/m̄P (and truncate x̂′i at 1). Note that m̄P is unknown
so x̂′ is only conceptually feasible. Similarly, let φ′(t1, . . . , tm) ,
‖x− x̂′‖2. Using Chernoff bound as (10), if m̄P = Ω

(
1
ε2

log 1
δ

)
,

Pr

[
1− ε ≤ ‖x− x̂‖2

‖x− x̂′‖2
≤ 1 + ε

]
≥ 1− δ. (27)

For any two random samples {t1, . . . , ti, . . . , tm} and {t1, . . . , t′i,
. . . , tm} differing at only one pair of tuples ti and t′i, the function
φ′ satisfies the Lipschitz property that

|φ′(t1, . . . , ti, . . . , tm)− φ′(t1, . . . , t′i, . . . , tm)| = ci ≤ 2/m̄P .

and
∑m
i=1 c

2
i ≤ 4/m̄P . So using McDiarmid’s inequality,

Pr
[
‖x− x̂′‖2 > E

[
‖x− x̂′‖2

]
+ ε
]
≤ e−8ε2m̄P = δ. (28)

Thus, from (26), (27), and (28), we have

Pr [‖x− x̂‖2 ≤ ε] ≥ 1− δ, (29)

if m = Ω
(

1
s0
· 1
ε2
·
(
log 1

ε2
+ log 1

δ

))
(note m̄P = m · s0). 2

Proof of Theorem 5. Let’s first focus on a special case where
s0 = 1 and the query Q(G, SUM(M),∅) has no predicate.

Suppose there are r groups in the answer x = 〈x1, . . . , xr〉 to
Q. Let Ti ⊆ T be the set of rows belonging to the ith group for
i = 1, . . . , r. Recall that, for a set T of rows, M(T ) =

∑
t∈T tM

is the sum of values of measure M over all rows in T . So we have
xi = M(Ti)/M(T ).

Letm be the number of rows in the measure-biased sample TM ,
and let mi be the number of rows belonging to the ith group in

TM . Recall that, in our estimated answer x̂ = 〈x̂1, . . . , x̂r〉, we
have x̂i = mi/m. So we can rewrite

E
[
‖x− x̂‖22

]
=

1

m2

r∑
i=1

E

[(
M(Ti)

M(T )
·m−mi

)2
]
. (30)

In our measure-biased sampling, a row in the ith group Ti is
drawn into TM with probability pMi = M(Ti)/M(T ). So mi is
the number of successes of in m independent Bernoulli trials with
success probability pMi . We have E [mi] = mpMi and Var [mi] =
mpMi (1− pMi ). (30) can be rewritten as

E
[
‖x− x̂‖22

]
=

1

m2

r∑
i=1

Var [mi] =
1

m

r∑
i=1

pMi (1−pMi ) ≤ 1

m
.

The rest part is similar to the proof of Theorem 3. Let m =
Ω
(
(1/ε2) · log(1/δ)

)
. Using Jensen’s inequality, we could have

E [‖x− x̂‖2] ≤ 1/
√
m ≤ ε. As replacing one row in TM changes

‖x − x̂‖2 at most by 1/m, using McDiarmid’s inequality, ‖x −
x̂‖2 ≤ 2ε with probability at most 1− δ.

Now consider the general case with 0 < s0 ≤ 1 and a query
Q(G, SUM(M),P) with measure selectivity sM (P) ≥ s0. The
idea is identical to the proof of Theorem 3 so we only sketch it in
the following part.

Let TP ⊆ T be the set of rows satisfying P in T , and Ti ⊆ TP
be the set of rows satisfying P and belonging to the ith group in
T . Also, let mP be the number of rows satisfying P in the sample
TM , and mi be the number of rows satisfying P and belonging to
the ithe group in TM .

In our measure-biased sampling, it is not hard to see E [mP ] =

m · M(TP)/M(T ) , m̄P . Similar to the proof of Theorem 3,
consider two events: Ein = [(1− ε)m̄P < mP < (1 + ε)m̄P ] and
Eout = [mP ≥ (1 + ε)m̄P ∨ mP ≤ (1 − ε)m̄P ]. Decompose
E
[
‖x− x̂‖22

]
as in (13)-(14) into

E
[
‖x− x̂‖22

]
= E

[
‖x− x̂‖22 | Ein

]
·Pr [Ein] (31)

+ E
[
‖x− x̂‖22 | Eout

]
·Pr [Eout] . (32)

We can show that Pr [Eout] is small enough so that (32) only adds a
term ε. On the other hand, in the event Ein, E

[
‖x− x̂‖22 | Ein

]
can

be upper bounded similarly as in the above special case by 1/m̄P
with high probability. Putting them together with a generalized
argument using McDiarmid’s inequality completes the proof. 2

Proof of Proposition 7. In the answer x = 〈x1, . . . , xr〉 to Q,
there are r groups. Let Ti ⊆ TP be the set of rows belonging
to the ith group for i = 1, . . . , r. For a set T of rows, recall
M(T ) =

∑
t∈T tM . So we have xi = M(Ti)/M(TP). Let m

be the number of rows in T ′P and T ′i be the set of rows belonging
to the ith group in T ′P . We estmate x̂i = M(T ′i )/M(T ′P).

We rewrite E
[
‖x− x̂‖22

]
=

=
1

M(T ′P)2

r∑
i=1

E
[(
xi ·M(T ′P)−M(T ′i )

)2] (33)

≤ 1

m2

r∑
i=1

E
[(
xi ·M(T ′P)−M(T ′i )

)2]
. (34)

Now focus on the ith group. Consider one random draw of a
row t in T ′P . Let It,i be indicator variable of the event that t ∈ Ti
(i.e., It,i = 1 if t ∈ Ti and It,i = 0 otherwise). Define random
variable Zt,i = xi · tM − tM · It,i. We can rewrite the term in
(34) as xi · M(T ′P) − M(T ′i ) =

∑
t∈T ′

P
Zt,i. It is not hard to

see that Et[Zt,i] = 0. And because the m rows in T ′P are drawn
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independently, we have

E

[(
Σt∈T ′

P
Zt,i
)2
]

= mEt
[
Z2
t,i

]
.

Putting it back to (34), we have

E
[
‖x− x̂‖22

]
≤ 1

m

r∑
i=1

Et
[
Z2
t,i

]
. (35)

We upper bound Et
[
Z2
t,i

]
in the rest part.

Et
[
Z2
t,i

]
= Et

[
x2
i · t2M − 2xi · t2M · It,i + t2M · I2

t,i

]
. (36)

Let n = |TP | and ni = |Ti|. Using the fact that tM ∈ [1,∆] for
any row t, we have

Et
[
x2
i · t2M

]
= x2

i ·
∑
t∈TP

t2M
n
≤ x2

i ·
n∆2

n
= x2

i∆
2.

And similarly, from ni/n ≤ xi∆, we have

Et
[
t2M · I2

t,i

]
=
∑
t∈Ti

t2M
n
≤ ni∆

2

n
≤ xi∆3,

Putting them back to (36), we have

Et
[
Z2
t,i

]
≤ x2

i∆
2 + xi∆

3 ≤ (∆3 + ∆2) · xi. (37)

And putting (37) back to (35), we have

E
[
‖x− x̂‖22

]
≤ 1

m

r∑
i=1

(∆3 + ∆2) · xi =
∆3 + ∆2

m
.

Let m = Ω
(
∆3/ε2

)
and then we have E

[
‖x− x̂‖22

]
≤ ε2, and

from Jessen’s inequality, we complete the proof. 2

Proof of Theorem 8. In the answer x = 〈x1, . . . , xr〉 to Q, there
are r groups. Let Ti ⊆ TP be the set of rows belonging to the ith
group. Let n = |TP | and ni = |Ti|. For a set T of rows, recall
M(T ) =

∑
t∈T tM . So we have xi = M(Ti)/M(TP).

Letm be the number of rows in the approximate measure-biased
sample T ′P , and let T ′i be the set of rows belonging to the ith group
in T ′P . Recall that we estimate xi as x̂i = M ′(T ′i )/M

′(T ′P). We
can rewrite E

[
‖x− x̂‖22

]
=

=
1

M ′(T ′P)2

r∑
i=1

E
[(
xi ·M ′(T ′P)−M ′(T ′i )

)2]
. (38)

(38) is analogous to (33). The probability of drawing a row from Ti
is pi =

∑
t∈Ti

apx(tM )/
∑
t∈TP

apx(tM ). It is not hard to show
pi ≤ 2xi. Similar to (33)-(37), we can show

E
[
‖x− x̂‖22

]
≤ 12

m
,

with ∆ = 2. So withm = Ω
(
1/ε2

)
, we have E

[
‖x− x̂‖22

]
≤ ε2,

and from Jessen’s inequality, we have E [‖x− x̂‖2] ≤ ε.
Finally, replace one row in TP changes ‖x − x̂‖2 at most by

2/m (because 1 ≤ tM′ < 2). So, using McDiarmid’s inequality,
we have that ‖x − x̂‖2 ≤ 2ε, with probability at most 1 − δ, if
m = Ω

(
(1/ε2) · log(1/δ)

)
. 2

B. DRAWING SAMPLES EFFICIENTLY
In the first scan, for each measure M , we compute M(T ) =∑
t∈T tM , i.e., the sum of values onM over all rows in T . We gen-

erate m random real numbers SM (m) uniformly from the range
[0,M(T )). Then in the second scan, we maintain a partial sum

of measure values when scanning rows; more specifically, for each
row t, we maintain the sum of t′M for all rows t′ that were scanned
before arriving at t, denoted as σM (t). We add one copy of t into
TM if there exists s ∈ SM (m) s.t. σM (t) ≤ s < σM (t) + tM ,
and k copies of t if there are k such samples s in SM (m).

The intuition behind the above implementation is that a row t
occupies an interval [σM (t), σM (t) + tM ) with width tM on the
whole range [0,M(T )), so a uniformly picked number from the
range falls into the interval of t with probability exactly propor-
tional to tM (as required in (4) by measure-biased sampling). A
simplified version can be used for generating uniform samples.

We illustrate this sampling procedure using an example.

EXAMPLE B.1. (Continue Example 1.1) Let’s use the table T
with 200 rows in Figure 1(a) and measure M to demonstrate how
to implement measure-biased sampling in two scans. To draw a
measure-biased sample TM with 20 rows, in the first scan, we cal-
culate M(T ) =

∑
t tM = 488. We draw 20 random numbers

SM (20) uniformly from the range [0, 488]. For example, we could
have SM (20) = {0, 25, 50, . . . , 450, 475}.

We maintain partial sums on M during the second scan of rows
from 1 to 200. For row 26, the partial sum is 25 and we have 25 in
SM (20), so row 26 is put into TM . For row 199, the partial sum
is 288 and {300, 325, 350, 375} ⊆ SM (20) falling into the range
[288, 388), so 4 copies of row 199 are put into TM . Figure 9 shows
how the measure-biased sample TM is constructed from random
numbers in SM (20). When there are multiple measures, the second
scans for all of them can be easily merged (by maintaining partial
sums on all the measures simultaneously).

C. LOW-FREQUENCY GROUP INDEX
Construction. For a dimension D and a value v, let TD=v be
the set of rows with value v on dimension D. In a table of n
rows, it is obvious that if there is an equi-constraint Di = vi in
the predicate of Q with |TDi=vi | ≤

√
n (or n · s0), then Q must

be a (s0-)small query. For each (dimension,value)-pair (D, v), iff
|TD=v| ≤

√
n, the low-frequency group index materializes TD=v ,

i.e., explicitly stores rows in TD=v sequentially. Note that in our
measure-augmented inverted index, inv(D, v) points to the same
set of rows as TD=v does. But inv(D, v) keeps only row IDs and
approximate measures, while in our low-frequency group index,
TD=v , if presents, keeps these rows with all dimensions and mea-
sure attributes in a row-oriented format.

We cannot get a tight theoretical bound of the size of this index
as the set of pairs (D, v) with |TD=v| ≤

√
n is dependent on the

frequency distribution of dimension D. But since
√
n is small, in

both benchmark and real datasets, we observe that its size is usually
very small (see “LF index” in Table 1). We store it on disk. When
the disk space budget is a problem, we can choose to not build it,
as measure-augmented inverted index suffices for all small queries.
Processing queries. For a query Q, we check two conditions:
whether i) its predicate P is in the form of (7) and ii) P contains an
equi-constraint “Di = vi” with TDi=vi stored in the index. If yes,
we simply need to scan up to

√
n rows in TDi=vi sequentially to

get the exact answer. It corresponds to ProcessWithLFIndex(Q)
in lines 8-9 of Algorithm 1. For example, the following query

SELECT C1, SUM(M) FROM T GROUP BY C1

WHERE C2 = 1 AND (C3 = 0 OR C3 = 1)
can be answered by scanning rows TC2=1.

THEOREM 10. If a query Q satisfies the above conditions i)
and ii), the low-frequency group index can be used to answerQ. On
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tID 1 26 51 76 92 94 96 98 111 136 161 186 199 200
Partial sum σM (t) 0 25 50 75 100 120 150 170 200 225 250 275 288 388
Numbers in SM (20) 0 25 50 75 100 125 150 175 200 225 250 275 300, 325, 350, 375 400, 425, 450, 475
σM (t) + tM 1 26 51 76 110 130 160 180 201 226 251 276 388 488

# copies of t in TM 1 1 1 1 1 1 1 1 1 1 1 1 4 4

Figure 9: Drawing a Measure-biased Sample TM
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Figure 10: Varying number of rows (LOG)
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Figure 11: Selectivity and # dimensions of queries (LOG)

a table of n rows, we need to retrieve at most
√
n rows sequentially

from the disk to compute its answer.

D. ADDITIONAL EXPERIMENTS
Exp-III: Vary database size. We test the scalability of our system
and compare it with DBX for datasets with different sizes. We
use datasets LOG-S, LOG-M, and LOG (refer to Table 1) and set
ε = 0.05. Average response time (in DBX and SPS) and average
actual error with one standard deviation (in SPS) for queries in all
the twenty workloads are plotted in Figure 10. First of all, we find
that the actual error is quite stable for different databases, which is
not surprising because of our rigorous theoretical guarantees.

For response time of SPS, we decompose it into SPSSample and
SPSIndex, which represent the time SPS spends on in-memory sam-
ples and on-disk indexes, respectively. It can be seen that response
time in SPS increases slightly for larger datasets, but the SPSIndex

part is quite stable. That is because the number of random accesses
needed in our algorithm is independent on the database size (Theo-
rem 8). On the other hand, DBX’s response time increases linearly
to the number of rows, because column-store indexes are used.
Exp-IV: Vary selectivity of queries. Selectivity (ratio of # rows
satisfying the predicate to total # rows) may affect the response
time of our system SPS. It is because large queries (with selec-
tivity higher than 1/

√
n) only need to scan in-memory samples,

but small queries may also need to use on-disk indexes. So we
partition queries in all the twenty workloads into six buckets with
selectivities in (10−1, 1], (10−2, 10−1], . . . , (0, 10−5]. Average re-
sponse time in each bucket is plotted in Figures 11(a) for LOG with
ε = 0.05. The one for TPC-H looks quite similar.

We find that SPSSample increases as selectivity becomes smaller.
It is because of the early termination condition when scanning sam-
ples: an ε-approximation x̂ needs to collect 1/ε2 rows that satisfies
the query predicate from the sample – if the predicate has large se-
lectivity, this condition can be satisfied earlier in the scan. SPSIndex

tends to be stable for small selectivity as the number of random
accesses is upper bounded by both 1/ε2 (Theorem 9).

Average actual error is steadily below the requested bound 0.05
because of our rigorous theoretical guarantee.
Exp-V: Vary number of dimensions in queries. We partition
queries into buckets based on the numbers of dimensions (in group-
bys, predicates, and measure of each query). In our workloads, the
number of dimensions varies from 2 to 9. Average response time in
each bucket is plotted in Figure 11(b) for LOG with ε = 0.05. The
one for TPC-H is similar and thus omitted here. With more dimen-
sions, the response time of SPS increases because of two reasons:
i) smaller selectivity (so SPSIndex increases); and ii) more columns
to be scanned (so SPSSample increases). SPS always has significant
speedup over DBX and tends to be stable after six dimensions.

E. ADDITIONAL RELATED WORK
Requested error v.s. actual error. Most of sampling-based sys-
tems estimate error bars using central limit theorem (CLT), Ho-
effding inequality [6], or bootstrap [29]. In particular, BlinkDB [5]
estimates error bar using standard closed-form formulas during on-
line query. It is then claimed in [4] that the estimated error bar fails
a lot in real query workload (also refer to our Example 1.1). A re-
cent diagnostic algorithm (Kleiner et al. [21]) is extended by [4] to
diagnose the failure of error bar estimation.

So requested (or estimated) error is not always below the actual
error. That is also one motivation why we introduce a more rig-
orous notion, distribution predication guarantee, in this work. As
far as we are concerned, our work is the first to provide such theo-
retical guarantees in AQP. One of our theoretical result on uniform
sampling is inspired by the result in Acharya et al. [1]. It proves
that uniform sampling achieves a tight bound in histogram approx-
imation, which can be applied in our problem when the query has
no predicate and the aggregate function is COUNT.
Non-sampling based approaches. Another orthogonal line of work
are view materialization [6] and datacube [18] which precompute
answers to some queries and create summaries to accelerate OLAP
query processing. Histograms [17] and wavelets [28, 9, 17] cre-
ate compressed synopses of relational tables to support some ag-
gregates. These techniques either have too large space overhead
(super-linear) to be applicable for enterprise-scale workloads and
datasets, or are applicable for only a subclass of aggregates sup-
ported by ours (e.g., without joins and complex predicates).
Other AQP systems. Deterministic approximate querying (DAQ)
schemes are recently proposed in [25]. It proposes novel bit-sliced
indexes to store columns separately so that a query can be evalu-
ated on the first few bits while ignoring the remaining bits for each
row. However, the bitwise DAQ still needs to exhaust all bits when
doing equality check on categorical dimensions, and in general it
needs to scan all rows for the most significant bits, so the speedup
is limited for the query class we support. However, it would be a
very interesting line of future work to incorporate such bit-sliced
indexes into sampling-based systems, as these two lines of works
are orthogonal and can mutually enhance each other.

Ordering guarantee in AQP is studied by Kim et al. [20]. It
proposes an optimal online sampling algorithm to guarantee the
right order of groups with the help of efficient indexes.
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