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ABSTRACT
Data lineage describes the relationship between individual
input and output data items of a workflow, and has served as
an integral ingredient for both traditional (e.g., debugging,
auditing, data integration, and security) and emergent (e.g.,
interactive visualizations, iterative analytics, explanations,
and cleaning) applications. The core, long-standing problem
that lineage systems need to address—and the main focus
of this paper—is to capture the relationships between input
and output data items across a workflow with the goal to
streamline queries over lineage. Unfortunately, current lin-
eage systems either incur high lineage capture overheads, or
lineage query processing costs, or both. As a result, applica-
tions, that in principle can express their logic declaratively in
lineage terms, resort to hand-tuned implementations. To this
end, we introduce Smoke, an in-memory database engine that
neither lineage capture overhead nor lineage query processing
needs to be compromised. To do so, Smoke introduces tight
integration of the lineage capture logic into physical database
operators; efficient, write-optimized lineage representations
for storage; and optimizations when future lineage queries
are known up-front. Our experiments on microbenchmarks
and realistic workloads show that Smoke reduces the lineage
capture overhead and streamlines lineage queries by multi-
ple orders of magnitude compared to state-of-the-art alterna-
tives. Our experiments on real-world applications highlight
that Smoke can meet the latency requirements of interactive
visualizations (e.g., <150ms) and outperform hand-written
implementations of data profiling primitives.

1. INTRODUCTION
Data lineage describes the relationship between individual

input and output data items of a computation. For instance,
given an erroneous result record of a workflow, it is helpful
to retrieve the intermediate or base records to investigate for
errors; similarly, identifying output records that were affected
by corrupted input records can help prevent erroneous con-
clusions. These operations are expressed as lineage queries
over the workflow: backward queries return the subset of
input records that contributed to a given subset of output
records; forward queries return the subset of output records
that depend on a given subset of input records.

Virtually, any application that requires an understanding
over the input-output derivation process can be expressed in
lineage terms. As such, data lineage has been an integral in-
gredient for applications such as debugging [18,46,50,58,89],
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Figure 1: Two workflows generate visualization views V1 and V2.
Then, a linked brushing interaction highlights in red marks in V2
that share the same input records with selected marks of V1. This
interaction can be expressed as a backward query from selected circles
in V1 followed by a forward query to highlight the bars in V2.

data integration [22], auditing [27], security [16, 50], explain-
ing query results [23, 78, 87, 88], data cleaning [12, 37], iter-
ative analytics [19], and interactive visualizations [90] that
highlight the importance of lineage-enabled systems.

Lineage-enabled systems answer lineage queries by auto-
matically capturing record-level relationships throughout a
workflow. A naive approach materializes pointers between in-
put and output records for each operator during workflow ex-
ecution, and follows these pointers to answer lineage queries.
Existing systems primarily differ based on when the relation-
ships are materialized (e.g., eagerly during workflow execution
or lazily reconstructed when executing a lineage query), and
how they are represented (e.g., tuple annotations [2, 9, 32, 44]
or explicit pointers [58,89]). Each design trades off between
the time and storage overhead to capture lineage and lin-
eage query performance. For instance, a query execution
engine may augment each operator to materialize a hash in-
dex that looks up input records for a given output record,
thus speeding up backward lineage query execution. How-
ever, the overhead of constructing the index can dwarf the
operator execution cost by 100× or more [89]—particularly if
the operator is heavily optimized for latency or throughput.

As data processing engines become faster, an important
question—and the main focus of this paper—is whether it is
possible to achieve the best of both worlds: negligible lineage
capture overhead as well as fast lineage query execution.

Unfortunately, current lineage systems incur either high lin-
eage capture overhead, or high lineage query processing costs,
or both. As a result, applications that could be expressed in
lineage terms resort to manual implementations:

Example 1. Figure 1 shows two views V1 and V2 generated
from queries over a database. Linked brushing is an interaction
technique where users select a set of marks (e.g., circles) in one
view, and marks derived from the same records are highlighted
in the other views. Although this functionality is typically im-
plemented manually, it can be logically expressed as a backward
lineage query from selected points in V1 to input records followed
by a forward query to highlight the corresponding bars in V2.
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To avoid the shortcomings of current lineage systems and
tackle the competing requirements of lineage applications,
we employ a careful combination of four design principles:
P1. Tight integration. In high throughput query processing
systems, per-tuple overheads incurred within a tight loop—
even a single virtual function call to write lineage metadata
to a separate lineage subsystem [46, 58, 89]—can slow down
operator execution by more than an order of magnitude. In
response, we introduce a physical algebra that tightly inte-
grates lineage capture into query execution, and we design
simple, write-efficient data structures for lineage capture to
avoid the overhead of crossing system boundaries.
P2. Apriori knowledge. Lineage applications such as debug-
ging need to capture lineage to answer ad-hoc lineage queries
that can trace back to any base or intermediate table. In ap-
plications such as interactive visualizations or data profiling
we typically know the possible set of lineage queries up front.
Having apriori knowledge enables us to avoid materializing
lineage that does not contribute to these lineage queries.
P3. Lineage consumption. Lineage applications rarely re-
quire all results of a lineage query (e.g., all records that con-
tributed to an aggregation result), unless the results have
low cardinality. Instead, the results are filtered, transformed,
and aggregated by additional SQL queries. We term these
queries lineage consuming queries. If such queries are known
up-front, as is typically the case for applications based on
templated analysis (e.g., Tableau or Power BI), physical de-
sign logic based on these templates can be pushed into the
lineage capture phase. Such physical design logic may include
materialization of aggregate statistics or prune/re-partition
lineage indexes to speed up future lineage consuming queries.
P4. Reuse. Finally, we have found that significant lineage
capture costs arise from generating and storing unnecessary
amounts of lineage data such as expensive annotations and
denormalized forms of lineage. Following the concept of
reusing data structures [26], we identify cases where data
structures constructed during normal operator execution can
be augmented and reused, but this time with the goal set to
capture lineage with low overhead.

This paper presents Smoke, a lineage-enabled system that
embodies the above four principles to support lineage capture
and querying with low latency. More specifically, Smoke is an
in-memory query compilation database engine that tightly in-
tegrates the lineage capture logic within query execution and
uses simple, write-efficient lineage indexes for low-overhead
lineage capture (P1). In addition, Smoke enables workload-
aware optimizations that prune captured lineage and push
the logic of lineage consuming queries down into the lineage
capture phase (P2,P3). Finally, Smoke identifies data struc-
tures, which are constructed during normal operator execu-
tion (i.e., hash tables), and (re)uses them, whenever possible,
for low-overhead lineage capture (P4).

In the rest of the paper, we start by discussing necessary
background and related work (Section 2). Then, we present
our techniques and contributions as follows:

• We introduce a physical algebra that tightly integrates the
lineage capture logic within the processing of single and
multi-operator plans. Each logical operator has a dual form
to both execute its logic and generate lineage. In turn, phys-
ical operators are combined to implement this extended
logic. Furthermore, we design write-efficient data struc-
tures to materialize lineage with low overhead.(Section 3)

• We design a suite of simple optimizations based on the
availability of future lineage consuming queries to 1) prune
lineage that will not be used and 2) materialize aggregates
and prune or re-partition our lineage data structures to
answer lineage consuming queries faster. (Section 4)

• We conduct experiments to 1) compare Smoke with state-
of-the-art lineage systems and 2) show how it can enable
real-world applications (i.e., interactive visualizations and
data profiling). The former experiments show that Smoke
reduces the lineage capture overhead and streamlines lin-
eage queries by multiple orders of magnitude compared
to state-of-the-art lineage systems. The latter suggest that
Smoke lets applications express their logic using declarative
lineage constructs and also speeds up these applications—
to the extent that Smoke is on par with or outperforms
hand-written implementations. (Sections 5 and 6)

We conclude with open questions for future work (Section 7).

2. BACKGROUND
In this section, we provide background on the fine-grained

lineage capture problem, the approach of Smoke for this prob-
lem, and applications of focus in this paper.

2.1 Fine-Grained Lineage Capture
Our lineage semantics adhere to the transformational prove-

nance semantics of [19, 32, 43] over relational queries.
Base queries. Formally, let the base query Q (D) = O be a
relational query over a database of relations D = {R1, · · · ,Rn}
that generates an output relation O. An application can ini-
tially execute multiple base queries Q = {Q 1, · · · ,Q m}. For
instance, Q in Figure 1 consists of two queries that generate
two output relations rendered as visualization views.
Lineage and lineage consuming queries. After a base query
runs, the user may issue a backward lineage query Lb(O′ ,Ri )
that traces from a subset of an output relationO′ ⊆O to a base
table Ri , or a forward lineage query Lf (R′i ,O) that traces from
a subset of an input relation R′ ⊆ Ri to the query’s output
relation O. A lineage query L(•) results in a relation that can
be used is another query C(D∪{L(•)}) which we term a lineage
consuming query; a lineage query is a special case of lineage
consuming queries: C = SELECT * FROM L( • ). Finally,
C itself can be used as a base query, meaning that another
lineage consuming query C′ can use C as a base query.1

Example 2. Let Q 1({X,Y }) = V1 and Q 2({X,Z}) = V2 be
the base queries in Figure 1. The linked brushing interaction is
expressed as a backward query Lb(V ′1,X) from the selected circles
V ′1 ⊆ V1 back to the input records in X that generated them. The
forward lineage query F = Lf (Lb(V ′1,X),V2) retrieves the linked
bars in V2. A lineage consuming query C(D∪F) can then be used
to change the color of the bars to red, similarly to the ones in [90].

We can model interactive visualization applications as base
queries (e.g., Q 1, Q 2 above) that load the initial visualiza-
tion, followed by lineage consuming queries W that express
user interactions [90]. Therefore, optimizing the visualiza-
tion responsiveness corresponds to quickly executing the base
queries followed by streamlining lineage consuming queries.

1
Smoke’s query model includes multi-backward and multi-

forward queries as well as refresh and forward propaga-
tion [43]. We limit the discussion to Lb, Lf , and C in that
they form the basis to express general query constructs.



Lazy and Eager lineage query evaluation. How can we an-
swer lineage queries quickly? Lazy approaches rewrite lineage
queries as relational queries over the input relations—the base
queries do not incur overhead at the cost of potentially slower
lineage query execution costs [17, 22, 43]. In contrast, we
might Eagerly materialize data structures during base query
execution to speed up future lineage queries [17,43]. We refer
to this as lineage capture, and we seek to minimize capture
overhead on the base query to speed up lineage queries.
Lineage capture overview. The eager approach incurs over-
head to capture the base query’s lineage graph. Logically, each

edge a
op
←→ b maps an operator op’s input record a to op’s

output record b that is derived from a. Backward lineage
connects tuples in the query output o ∈ O with tuples in
each input base relation r ∈ Ri by identifying all end-to-end
edges o{ r for which a path exists between the two records.
Forward lineage reverses these arrows. Materializing such
end-to-end forward and backward lineage indexes can help
speed up lineage consuming queries.

We will present techniques that can efficiently capture lin-
eage indexes in a workload-agnostic setting by carefully instru-
menting operator implementations, and in a workload-aware
setting by tailoring the indexes for future lineage consuming
queries if they are known up-front. In general, lineage cap-
ture techniques fall into two categories: logical and physical.
Logical lineage capture. This class of approaches stay
within the relational model by rewriting the base query into
Q′ ({R1, · · · ,Rn}) = O′ , so that its output is annotated with
additional attributes of input tuples. Some systems [2, 18]
generate a normalized representation of the lineage graph
such that a join query between O′ and each base relation Ri
can create the lineage edges between O′ and Ri . The correct
output relation O can be retrieved by projecting away the an-
notation attributes from O′ . Alternative approaches [18, 32]
output a single denormalized representation that extends O′

with attributes of the input relations. Recent work has shown
that the latter rewrite rules (Perm [32]) and optimizations
leveraging the database optimizer (GProm [66]) incurs lower
capture overheads than the former normalized approach.

Although these approaches can run on any relational
database and benefit from the database optimizer, they suf-
fer from several performance drawbacks. The normalized
representation requires expensive independent joins when
running lineage queries. The denormalized representation
can incur significant data duplication—an aggregation output
o computed over k input records will be duplicated k×—and
require further projections to derive O from O′ . Furthermore,
indexes are needed to speed up lineage queries.
Physical lineage capture. This approach directly instru-
ments physical operators write lineage edges to a lineage
subsystem through an API; the subsystem stores and indexes
the edges and answers lineage queries [44,45, 46,58,89]. This
can support black-box operators and decouples lineage cap-
ture from its physical representation. However, we find that
virtual function calls alone (ignoring the cross-process over-
heads) can slow data-intensive operators by up to 2×. Further,
lineage capture cannot easily leverage and be co-optimized
with base query execution.

2.2 Approach of Smoke
To this end, we introduce Smoke, an in-memory database

engine that avoids the drawbacks of logical and physical
approaches. Smoke improves upon logical approaches by
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Figure 2: Smoke is a query compilation engine that instruments
physical query plans to capture lineage efficiently: Query execution
generates lineage indexes that map input and output record ids (rids)
as well as materialized views.

physically representing the lineage edges as read- and write-
efficient indexes instead of relationally-encoded annotations.
We improve upon physical approaches by introducing a phys-
ical algebra that tightly integrates lineage capture and rela-
tional operator logic to avoid API calls and in a way amenable
to co-optimization. Finally, Smoke can exploit knowledge of
lineage consuming queries to (a) prune or partition lineage
indexes or (b) materialize views during the base query execution
that will benefit the lineage consuming queries.

The primary focus of this work is to explore mechanisms to
instrument physical operator plans with lineage capture logic.
To do so, we have implemented Smoke as a query compilation
execution engine using the produce-consumer model [65]
(Figure 2). It takes as input the base query Q and an op-
tional workload of lineage consuming queries W ; parses and
optimizes Q to generate a physical query plan; instruments
the plan to directly generate indexes to speed up backward
and forward lineage queries; and compiles the instrumented
plan into machine code that, when executed, generatesQ (D)
as well as lineage indexes. Internally, Smoke uses a single-
threaded, row-oriented execution model, and leverages hash-
based operator implementations that are widely used in fast
query engines and are amenable to low-overhead lineage cap-
ture. Execution models that use advanced features such as
compression or vectorization are interesting future work.

2.3 Lineage Applications
Many applications logically rely on lineage (and gen-

erally provenance), including but not limited to: debug-
ging [18, 46, 50, 58, 89], diagnostics [83], data integration [22],
security [16, 50], auditing [27] (the recent EU GDP regula-
tion [27] mandates tracking lineage), data cleaning [12, 37],
explaining query results [23,78,87,88], debugging machine
learning pipelines [54, 91], and interactive visualizations [90].

Unfortunately, there is a disconnect between modeling ap-
plications in terms of lineage, and the performance of existing
lineage capture mechanisms—the overhead is enough that ap-
plications resort to manual implementations instead. For this
reason, we center the paper around interactive visualizations:
it is a domain that can directly translate to lineage [40,90], yet
is dominated by hand-written implementations. Furthermore,
it imposes strict latency requirements on lineage capture (to
show the initial visualization) and lineage consuming queries
(to respond to user interactions). Finally, our experiments
seek to argue, using visualization and data profiling applica-
tions, that lineage is not only an elegant logical description of
many use cases, but can be on a par with or even improve on
performance compared to hand-tuned implementations.
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3. FAST LINEAGE CAPTURE
This section describes lineage capture without knowledge

of the future workload. We present (a) lineage index repre-
sentations to map output-to-input or input-to-output record
ids (rids) that are read- and write-efficient, and (b) a physical
algebra that tightly integrates the lineage capture logic with
the base query execution. To do so, we will describe how to
instrument individual as well as multiple operators to capture
lineage with low overhead.

3.1 Lineage Index Representations
Smoke uses two main lineage index representations. Fig-

ure 3 illustrates the input and output relations R and O, re-
spectively, and the two rid-based representations for 1-to-N
and 1-to-1 operators. We index rids because the lineage in-
dexes are cheap to write, and lookups—which simply index
into the relation’s array—are fast. In contrast, indexing full
tuples incurs high write costs, while indexing primary keys is
not beneficial without building primary key indexes apriori
or when the primary keys are wide. Furthermore, in-memory
columnar engines [1, 28] already create rid lists as part of
query processing that resemble our lineage indexes, and en-
able reuse opportunities to reduce lineage capture costs.
Rid Index. 1-to-N relationships are represented as inverted
indexes. Consider the backward lineage of GROUPBY. The
index’s ith entry corresponds to the ith output group, and
points to an rid array containing rids of the input records
that belong to the group. The Rid Index is used for 1-to-
N forward lineage relationships as well, such as the JOIN
operator. Following high performance libraries [29], the index
and rid arrays are initialized to 10 elements and grow by
a factor of 1.5× on overflow. Our experiments show that
array resizing dominates lineage capture costs, and statistics
that allow Smoke to pre-allocate appropriate sized arrays can
reduce lineage capture costs by up to 60%. To avoid offline
statistics computation, we show how useful statistics can be
collected during query processing.
Rid Array. 1-to-1 relationships between output and input
are represented as a single array. Each entry is an input record
rid rather than a pointer to an rid array.

3.2 Single Operator Instrumentation
We now introduce instrumentation techniques to generate

lineage indexes when executing single and multi-operator
plans. Our designs are based on two paradigms: Defer defers
portions of the lineage capture until after operator execution
while Inject incurs the full cost during execution. Defer is
preferable when the base query execution overhead must be
minimized, or when it is possible to collect cardinality statis-
tics during base query execution to allocate appropriately
sized lineage indexes and avoid resizing costs. In contrast,
Inject typically incurs lower overall overhead, but the client
needs to wait longer to retrieve the results of the base query.
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Figure 4: Inject and Defer plans for group-by aggregation and join.
Dotted arrows are only necessary for lineage capture.

We now describe how both paradigms illustrate the appli-
cation of the tight integration and reuse principles from the
Introduction for core relational operators. Our focus is on the
mechanisms and Section 7 discusses future work on automati-
cally choosing between these paradigms. Code snippets of the
compiled code and details for additional operators (including
∪, ∩, −, /, ×, ./θ) are covered in our technical report [75].
Section 3.3 extends our support to multi-operator plans.

3.2.1 Projection
Projection under bag semantics does not need lineage cap-

ture because the input and output order and cardinalities are
identical—the rid of an output (input) record is its backward
(forward) lineage. Projection with set semantics is imple-
mented using grouping, and we use the same mechanism as
that for group-by aggregation below.

3.2.2 Selection
Selection is an if condition in a for loop over the in-

put relation, and emits a record if the predicate evaluates
to true [64]. Both forward and backward lineage use rid ar-
rays; the forward rid array can be pre-allocated based on the
cardinality of the input relation. Inject adds two counters,
ctri and ctro, to track the rids of the current input and output
records, respectively. If a record is emitted, we set the ctrthi
element of the forward rid array to ctro, and append ctri to
the backward rid array. Available selectivity estimates can be
used to pre-allocate the backward rid array and avoid realloca-
tion costs during the append operation. We don’t implement
Defer because it is strictly inferior to Inject.

3.2.3 Group-By Aggregation
Query compilers decompose GROUPBY into two physical

operators: γht builds the hash table that maps group-by val-
ues to the group’s intermediate aggregation state; γagg scans
the hash table, finalizes aggregation results for each group,
and emits output records. Figure 4 shows the plans for both
instrumentation paradigms; the lineage indexes consist of a
forward rid array and a backward rid index.
Defer: Consider the Defer plan in Figure 4.a. γ ′ht for Defer

extends γht to store an oid number to each group’s interme-
diate aggregation state. When γ ′agg scans the hash table to
construct the output records, it uses a counter to track the
output record’s rid and assign it to the group’s oid value (i.e.,
oid tracks the output rid of the group in the result). Smoke
then pins the hash table in memory. At a later time, Zγ can
scan each record in A, reuse the hash table to probe and re-
trieve the associated group’s oid, and populate the backward
rid index and forward rid array.

Although Defer must scanA twice, the operator’s input and
output cardinalities are used to avoid resizing costs during
Zγ . Also, Zγ can be freely scheduled (e.g., immediately after
γ ′ht or during user think time when system resources are free).



Inject: Consider the Inject plan in Figure 4.b. γ ′ht this time
augments each group’s intermediate state with an rid array
i_rids that contains the rids of the group’s input records (i.e.,
backward lineage). γ ′agg tracks the current output record id
oid in order to set the pointer in the backward index to the
bucket’s rid list and the values in the forward rid list. Since
γ ′agg knows the input and output cardinalities, it can correctly
allocate arrays for the backward and forward indexes. The
primary overhead is due to reallocations of i_rids during the
build phase in γ ′ht . We find that knowing group cardinalities
can decrease the lineage capture overhead up to 60%.

3.2.4 Join
Smoke instruments hash joins in a similar way as hash

aggregation. A hash join is split into two physical operators:
Zht builds the hash table on the left relation A, and Zprobe
uses each record of the right relation B to probe the hash
table. We now introduce Inject and Defer techniques for
lineage capture that can be used for general M:N joins, and
further optimizations for primary key-foreign key (pk-fk)
joins. Smoke generates backward rid arrays and forward rid
indexes (an input record can generate multiple join results).
Inject: Consider the Inject plan for joins in Figure 4.d.
The build phase Z′ht augments each hash table entry with an
rid array i_rids that contains the input rids from A for that
entry’s join key. The probe phase Z′probe tracks the rid for
each output record, and populates the forward and backward
indexes as expected. Note that output cardinalities are not yet
known within the Z′probe phase and we cannot pre-allocate
our lineage indexes. As a result, although the backward rid
array is relatively cheap to resize, the forward rid indexes can
potentially trigger multiple reallocations if an input record
has many matches and penalize the performance.
Defer: Our main observation is that exact cardinalities
needed to pre-allocate the forward rid indexes are known after
the probe phase and can be used by Defer. Note that defer-
ring the whole construction after the probe phase is similar to
the logical approaches, and incurs the cost of re-running the
join, or annotating, indexing and projecting the join output.
Defer instead augments Inject by partially deferring index
construction for the left input relation A (see Figure 4.c).

The build phase adds a second rid list o_rids to the hash
table entry, in addition to i_rids from Inject. When B is
scanned during the probe phase, its output records are emit-
ted contiguously, thus o_rids need only store the rid of the
first output record for each match with a B record. After the
Z′probe phase, the forward and backward indexes for the left
relation A can then be pre-allocated and populated in a final
scan of the hash table (scanht in Figure 4.c). Deferring for B
is also possible, however the benefits are minimal because we
need to partition the output records for each hash table entry
by the B records that it matches, which we found to be costly.
Further optimizations. If the hash table is constructed on a
unique key, then the i_rids do not need to be arrays and can
be replaced with a single integer. Also, if the join is a primary-
key foreign-key join, the forward index of the foreign-key
table is an rid array; since the join cardinality is the same
as the foreign-key table cardinality, backward indexes are
pre-allocated. Finally, join selectivity estimates can help pre-
allocate the forward rid indexes.

3.3 Multi-Operator Instrumentation
The naïve way to support multi-operator plans is to in-

dividually instrument each operator to generate its lineage
indexes; lineage queries can use the indexes to trace backward
or forward through the plan. This approach is correct and
can be used to support any DAG workflow composed of our
physical operators. However, it unnecessarily materializes all
intermediate lineage indexes even though only the lineage
between output and input records are strictly needed.

We address this issue with a technique that 1) propagates
lineage information throughout plan execution so that only a
single set of lineage indexes connecting input and final output
relations are emitted, and 2) reduces the number of lineage
index materialization points in the query plan.

To propagate lineage throughout plan execution, consider
a two-operator plan opp(opc(R)) = O with input relation R.
When opp runs, it will use opc’s backward lineage index to
populate its own lineage index with rids that point to R rather
than the intermediate relation opc(R); opc’s lineage indexes
can be garbage collected when not needed further.

To reduce lineage index materialization points, recall that
database engines pipeline operators to reduce intermediate re-
sults by merging multiple operators into a single pipeline [64].
Operators such as building hash tables are pipeline breakers
because the input needs to be fully read before the parent
operator can run. Within a pipeline there is no need for lin-
eage capture, but pipeline breakers need to generate lineage
along with the intermediate result. In Section 3.2, we showed
how pipeline breakers (e.g., hash table construction for the
left-side of joins and group-by aggregations) can augment the
hash tables with lineage. Parent pipelines that use the same
hash-tables for query evaluation (e.g., cascading joins) can
also use the lineage indexes embedded in the hash tables to
implement the lineage propagation above.
Implementation Details Our engine supports naive instru-
mentation for arbitrary relational DAG workflows, and we
focused our optimizations for SPJA query blocks composed of
pk-fk joins. This was to simplify our engineering, and because
fast capture for SPJA blocks can be extended to nested blocks
by using the propagation technique above. We focus on pk-fk
joins due to their prevalence in benchmarks and real-world
applications, and because the Inject and Defer instrumenta-
tion for pk-fk joins are identical (Section 3.2). Thus, the main
distinction between Inject and Defer for SPJA blocks is how
the final aggregation operator in the block is instrumented—
the joins are instrumented identically, while select and project
are pipelined. Details are in our technical report [75].

4. WORKLOAD-AWARE OPTIMIZATIONS
Lineage applications such as interactive visualizations will

often support a pre-defined set of interactions (e.g., filter,
pan, tooltip, cross-filter [20]) that amount to a pre-declared
lineage consuming query workload W . This section describes
simple but effective optimizations that exploit knowledge of
W to avoid capturing lineage that is not queried, and generate
lineage representations that directly speed up queries in W .
To simplify the discussion, we will center each optimization
around different classes of lineage consuming queries over the
base query Q = σo_orderdate>‘2017-08-01’(orders ./ lineitem).

4.1 Instrumentation Pruning



Instrumentation pruning disables lineage capture if the
lineage indexes will not be used by W . We present two types
of pruning that do not generate lineage for specific input
relations, and for backward/forward lineage.
Pruning input relations. Suppose the visualization only sup-
ports a tooltip interaction that shows detailed lineitem infor-
mation when the user hovers over a visualization mark. This
is expressed as a backward lineage query to lineitem. In
this case, we can avoid capturing lineage for the orders table.
In general, Smoke does not capture lineage for any relation
not referenced in W .
Pruning lineage direction. Extending the previous example,
it is clear that W will only execute a backward lineage query
to lineitem and not vice versa. Thus, Smoke can also avoid
generating the forward lineage index from lineitem to the
base query output. The lineage indexes that can be pruned is
evident from the lineage consuming queries in W .

4.2 Push-Down Optimizations
User facing applications rarely present a large set of query

results to the users—instead they will reduce the result cardi-
nality with further filter, transform, and/or aggregation op-
erations. This is also the case for lineage consuming queries,
and presents opportunities to push these reduction opera-
tions into the lineage capture logic. We present three sim-
ple push-down optimizations for fixed filter predicates, tem-
plated predicates, and aggregation operations, and then dis-
cuss the relationship between push-down optimizations and
common provenance semantics.
Selection push-down. Visualizations often update metrics
that summarize data that the user selects. For instance, the
following query retrieves Christmas shipment order infor-
mation for parts of the visualization that the user interacts
with: C = σshipdate=‘xmas′ (LB(O′ ⊆Q (D),orders)). This opti-
mization pushes the predicate shipdate=‘xmas’ into the
instrumented base query; before Smoke populates the back-
ward lineage indexes, it checks whether the input tuple sat-
isfies the predicate. If the predicate is on a GROUPBY key,
Smoke can also avoid any lineage capture overhead for all
other groups. This technique reduces lineage space require-
ments, and typically reduces capture overhead. However, if
the predicate is expensive to evaluate (e.g., slow UDF), it is
possible to introduce more capture overhead.
Data skipping using lineage. Push down selections require
a static predicate, however interactive visualizations also use
parameterized predicates. For instance, the user may use
a slider to dynamically specify the filtered shipping date:
C = σshipdate=:p1(LB(O′ ⊆ Q (D),orders)). This pattern is
ubiquitous in interactive visualizations and applies to faceted
search, cross-filtering, zooming, or panning. Smoke pushes
the parameterized predicate into lineage capture by parti-
tioning the rid arrays (standalone and part of rid indexes)
by the predicate attribute. For instance, Smoke would parti-
tion the rid arrays in the backward index for orders by the
shipdate attribute, so that C only reads the rid partition
matching the parameter :p1. This technique is applicable to
categorical attributes and continuous attributes that can be
discretized. This is almost always possible because user-facing
output is ultimately discretized at pixel granularity [48].
Group-by push-down. Interactions such as cross-filtering let
users select marks in one view, trace those marks to the input
records that generated them, and recompute the aggregation
queries in other views based on the selected subset of input

records. This pattern is precisely an aggregation query over
the backward lineage of the user’s selection. Smoke pushes
the group-by aggregation into lineage capture by partitioning
the rid arrays on the group-by attributes, and incrementally
computing the intermediate aggregation state. This technique
works if the main difference between the base and lineage
consuming query is the addition of grouping attributes. In ef-
fect, lineage capture generates data cubes to answer the linage
consuming aggregation query. In contrast to building data
cubes offline, which requires separate scans of the database,
this approach piggy-backs on top of the base query’s existing
table scans. As with prior work [34,38,57], this technique sup-
ports algebraic and distributive functions (e.g., SUM, COUNT,
and AVG), and we evaluate this optimization extensively in
synthetic (Section 6.4) and real-world settings (Section 6.5.1).
Relationships with Provenance Semantics. We observe that
popular provenance semantics (e.g., which [22,81] and why
[10] provenance) can be expressed as lineage consuming
queries and pushed down using the above optimizations. In
other words, Smoke can operate as a system with alternative
provenance semantics depending on the given lineage con-
suming query. For space reasons, we include a brief discussion
in our technical report [75].
Applying Optimizations. Choosing the appropriate opti-
mizations, manually or automatically, each poses challenges
that we leave to future work. “What language extensions (e.g.,
CREATE BACKWARD INDEX ON (SELECT ...)) are needed to
capture lineage manually?” and “What cost models are
needed to model the trade-offs for each capture and opti-
mization choice?” constitute interesting research questions.

5. EXPERIMENTAL SETTINGS
Our experiments seek to show that Smoke (1) incurs sig-

nificantly lower lineage capture overhead than logical and
physical lineage capture approaches, (2) can execute lineage
queries faster than lazy, logical, and physical lineage query ap-
proaches, and (3) can leverage lineage indexes and workload-
aware optimizations to speed up real-world applications as
compared to current manual implementations.

To this end, we compare Smoke to state-of-the-art logical
and physical lineage capture and query approaches using
microbenchmarks on single operator plans, as well as end-
to-end evaluations over a subset of TPC-H queries. Using
TPC-H, we further show that our workload-aware optimiza-
tions can provide further lineage query speedups on the
“Overview first, zoom and filter, and details on demand” in-
teraction paradigm and respond within interactive latencies
of < 150ms [11, 56, 61]. Finally, we express two real-world
applications (cross-filter [20] and data profiling [83]) in lin-
eage terms and show that Smoke can match or outperform
hand-optimized implementations of the same applications.
Data. The microbenchmarks use a synthetic dataset of tables
zipfθ,n,g(id,z,v) containing zipfian distributions of vary-
ing skew. z is an integer that follows a zipfian distribution and
v is a double that follows a uniform distribution in [0,100]. θ
controls the zipfian skew, n is the table size, and g specifies
the number of distinct z values (i.e., groups). Tuple sizes are
small to emphasize worst-case lineage overheads. End-to-end
and workload-aware experiments use the TPC-H data genera-
tor and vary the scale factor. Our experiments on real-world
applications use the Ontime [67, 68] (123.5m tuples, 12GB)
and Physician [74] (2.2m tuples, 0.6GB) datasets.



Abbreviation Description
Smoke

Baseline Smoke without lineage capture
Smoke-D Smoke with defer lineage capture
Smoke-I Smoke with inject lineage capture

Logical
Logic-Rid Rid-based annotation
Logic-Tup Tuple-based annotation
Logic-Idx Indexing input-output relations

Physical
Phys-Mem Virtual emit function calls and no reuse
Phys-Bdb Lineage capture using BerkeleyDB

Table 1: Lineage capture techniques used in our evaluation.

To ensure a fair comparison, we implement and optimize al-
ternative, state-of-the-art techniques in our query engine. Our
implementation reduces the capture overheads (by several
orders of magnitude) as compared to their original implemen-
tations, and is detailed in our extended report [75].

First, we describe the compared lineage capture techniques
(see also Table 1 for a minimal description):
Smoke techniques. Smoke-I and Smoke-D instrument the
plan using Inject and Defer instrumentation (Section 3). Un-
less otherwise noted, Smoke-I and Smoke-D don’t use opti-
mizations from Section 3. Baseline evaluates base queries on
Smoke without capturing lineage.
Baseline logical techniques. State-of-the-art logical ap-
proaches (Perm [32], GProm [66]) use query rewrites to an-
notate the base query output with lineage. However, they
are built on production databases that incur unneeded cap-
ture overheads from e.g., transaction and buffer managers,
lack of hash-table reuse, no query compilation. For this rea-
son, we used Perm’s rewrite rules (and whenever applicable,
GProm’s optimizations) to generate physical plans that an-
notate the output with either rids (Logic-Rid) or full input
tuples (Logic-Tup), and implemented the plans in Smoke.
Note that the output relation needs to be indexed to support
fast lineage lookups. To this end, Logic-Idx scans the anno-
tated output relation to construct the same end-to-end lineage
indexes as those created by Smoke. Ultimately, our implemen-
tations are two orders of magnitude faster than Perm and
GProm but still incur capture overheads higher than Smoke.
Baseline physical techniques. To highlight the importance
of tightly integrating lineage capture and operator logic, we
use two baseline physical techniques. Phys-Mem instruments
each operator to make virtual function calls to store input-
output rid pairs in Smoke lineage indexes from Section 3,
which highlights the overhead of making a virtual function
call for each lineage edge. Phys-Bdb instead indexes lineage
data in BerkeleyDB to showcase the drawbacks of using a
separate storage subsystem [89].

Moreover, we compare lineage querying techniques based
on data models and indexes induced during lineage capture:
Lineage consuming queries. Smoke-I, Smoke-D, Logic-Idx,
and Phys-Mem all capture the same lineage indexes from
Section 3.1, thus their lineage consuming query performance
will be identical. We call this group Smoke-L. We compare
with a baseline lazy approach, Lazy, which uses standard
rules [22, 43] to rewrite lineage consuming queries into rela-
tional queries that scan the input relations. We also compare
with the data model that Logic-Rid and Logic-Tup produce
and the indexes that Phys-Bdb generate. Finally, we consider
Lazy and Smoke without optimizations as baselines to our
workload-aware optimizations.

Settings for the real-world applications are provided inline.
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Figure 5: Comparison of lineage capture costs for the group-by
aggregation operator for different relation cardinalities (columns) and
number of distinct groups (rows). Smoke-I and Smoke-D slow down
the non-instrumented Baseline the least as compared to alternative
logical and physical capture methods.

Measures. For lineage capture, we report the absolute base
query latency and relative overhead compared to not cap-
turing lineage. For lineage and lineage consuming queries,
we report absolute latency and speedup over baselines. All
numbers are averaged over 15 runs, after 3 warm-up runs.
Platforms. We ran experiments on a MacBook Pro (macOS
Sierra 10.12.3, 8GiB 1600MHz DDR3, 2.9GHz Intel Core i7),
and a server-class machine (Ubuntu 14.04, 64GiB 2133MHz
DDR4, 3.1GHz Intel Xeon E5-1607 v4). Both architectures
have caches sizes 32KiB L1d, 32KiB L1i, and 256KiB L2—the
MacBook has 4MiB L3 and the server-class has 10MiB L3. Our
overall findings for lineage capture are consistent across the
two architectures. Since lineage capture is write-intensive,
we report results using the lower memory bandwidth setting
(MacBook). For the crossfilter application, we report the
server-class results because the Ontime dataset doesn’t fit in
the MacBook memory.

6. EXPERIMENTAL RESULTS
In this section, we first compare lineage capture techniques

on microbenchmarks (Section 6.1) and TPC-H queries (Sec-
tion 6.2). Then, we compare techniques on lineage query eval-
uation (Section 6.3) and showcase the impact of our workload-
aware optimizations (Section 6.4). We conclude with experi-
ments on real-world applications (Section 6.5).

6.1 Single Operator Lineage Capture
We first evaluate lineage capture with a set of single opera-

tor microbenchmarks for group-by (Section 6.1.1), pk-fk joins
(Section 6.1.2), and m:n joins (Section 6.1.3).

6.1.1 Group-by Aggregation
We use the following base query, which groups by z drawn

from a zipfian distribution so that cardinalities are skewed
(θ = 1). Visualizations often compute multiple statistics to
avoid redundant scans when users ask for new statistics [82]:
Q = SELECT z, COUNT(*), SUM(v), SUM(v*v),

SUM(sqrt(v)), MIN(v), MAX(v)
FROM zipf
GROUP BY z -- #groups follow a zipfian

Figure 5 reports the lineage capture latency (base query cost
+ overhead) for each instrumentation technique, and varies
the input size (columns) and the number of groups (rows).
Smoke. Smoke-I incurs the lowest overhead among tech-
niques (0.7× on average). Smoke-D is slightly slower (1.2× on
average) due to the cost of join to construct lineage indexes.



Comparison with Logical systems. Logic-Rid and Logic-

Tup use Perm’s aggregation rewrite rule, which computes
Q Zz zipf to derive the denormalized lineage graph as a
single relation. The cost of computing and writing the denor-
malized lineage graph is costly and can slow the base query by
multiple orders of magnitude. Since zipf is narrow, Logic-
Tup performs similarly to Logic-Rid, however we expect the
cost to increase for wider input relations. Logic-Idx has extra
indexing costs over Logic-Rid and is not plotted.
Comparison with Physical systems. The primary over-
head for Phys-Mem is the cost of a virtual function call for
each written lineage edge. The cost of building index data
structures is comparable to Smoke’s write costs, however
Smoke can reuse the hash table built by γ ′ht and incur lower
costs for building the backward lineage rid index. Phys-Bdb
incurs by far the highest overhead (up to 250× slowdown),
due to the overhead of communicating with BerkeleyDB. The
same trends hold for the other operators, and we have not
found physical approaches to be competitive. As such, we do
not report physical approaches in the rest of the experiments.
Varying dataset size, skew, and groups. In general, the lin-
eage capture techniques all incur a constant per input tuple
overhead, and differ on the constant value. This is why in-
creasing the input relation size increases costs linearly for all
techniques. Increasing the number of groups increases the
costs of building and scanning the group-by hash table as well
as the output cardinality, and affects all techniques including
the baseline. We find that the overhead is independent of
the zipfian skew because it does not change the number of
lineage edges that need to be written; it does affect querying
lineage as we will see in Section 6.3.
Complexity of group-by keys and aggregate functions. We
find that the techniques differ in their sensitivity to the size of
the group-by keys and the number of aggregation functions
in the project clause of the query. Smoke-I simply generates
rid index and rid arrays, and is not affected by these char-
acteristics of the base query. In contrast, Smoke-D and both
logical approaches are sensitive to the size of the group-by
keys, since they are used to join the output and input rela-
tions. Finally, the logical approaches are also affected by the
number of aggregation functions because they affect the cost
of the final projection. In short, we believe our setup is fa-
vorable to alternative approaches, and find that Smoke still
shows substantial lineage capture benefits.
Cardinality Statistics. If Smoke knows the cardinality statis-
tics for each group, then it can allocate correctly sized arrays
in the lineage indexes (Section 3). This further reduces the
lineage capture overhead by 52% on average and leads to over-
head reduction from 0.7× to 0.3× for Smoke-I (not plotted).

6.1.2 Primary-Foreign Key (Pk-Fk) Joins
We use the following primary-foreign key join query:

SELECT * FROM gids,zipf WHERE gids.id=zipf.z.
zipf.z is a foreign key that references gids.id and drawn
from a zipfian distribution so that some keys are more
popular than others. We vary the number of join matches
(i.e., groups) by varying the number of unique values for
gids.id. In addition to Baseline and Smoke-I, we evaluate
Smoke-I-TC, which assumes that we know the number of
matches for each join attribute value—this is to highlight the
costs of array resizing. Note that Smoke-D is equivalent to
Smoke-I due to the pkfk optimization (Section 3.2.4). We
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Figure 6: Smoke-I reduces the instrumented pk-fk join latency from
1.4× (Logic-Idx) to 0.41×. Knowing the join cardinalities further
reduces the overhead to 0.23× (Smoke-I-TC). Smoke-D is equivalent
to Smoke-I for pk-fk joins.

compare against Logic-Idx because Logic-Rid and Logic-Tup

do not support forward queries without additional indexes.
Comparison with logical techniques. Logic-Idx incurs 1.4×
relative overhead on average due to the costs of computing
and materializing the denormalized lineage graph in the form
of the annotated output relation, and scanning the annotated
table to build backward and forward lineage indexes for both
input relations. In contrast, Smoke-I incurs on average 0.41×
overhead; knowing join cardinalities reduces the overhead to
0.23× on average. Finally, note that Smoke-I already knows
the cardinalities for the backward indexes and the forward
index of the right table for pkfk joins (Section 3.2.4), thus
Smoke-I-TC’s lower overhead can be attributed to lower real-
location costs to build the forward index for the left table.

6.1.3 Many-to-Many Joins
For M:N joins we use the following base query that per-

forms a join over two z attributes with zipfian distributions:
SELECT * FROM zipf1,zipf2 WHERE zipf1.z=zipf2.z.
The join is highly skewed to stress lineage capture. Both
z integer attributes are drawn from a zipfian distribu-
tion, where zipf1.z is within [1,10] or [1,100], while
zipf2.z∈ [1,100]. This means that tuples with z = 1 have a
disproportionate number of matches, whereas larger z will
have few matches. Furthermore, we fix the size of the left
table to 1000 records and vary the right from 103 to 105.

Section 3.2.4 described the Inject approach, which pop-
ulates the lineage indexes within the join’s probe phase
(Zprobe), and the Defer approach, which computes cardinal-
ity statistics during the probe phase to correctly allocate and
populate the lineage indexes for the left table (a_fw,a_bw)
after the probe phase and avoid array resizing costs. Finally,
to break down the benefits of Defer, we also evaluate Smoke-

D-DeferForw which still defers a_fw but populates a_bw
within the Zprobe phase. To simplify the presentation, we
only report Smoke-based techniques since the relationship
with alternatives is consistent with the previous results.
Comparison of Smoke techniques. In contrast to the other
operators, the MN join over skewed inputs is similar to a
cross-product, and generates > 1billion results. Materializing
the result set renders the capture overheads non-informative
so we do not materialize the output. In this case, the MN
execution is nearly 0, so Figure 7 primarily reports instru-
mentation overhead for the three techniques. The overhead
is predominantly due to rid array resizing, which is why de-
ferring the forward and backward lineage index construction
for the left table reduces overhead by up to 2.65×. Finally, in-
creasing the number of groups for zipf1.z reduces the costs



10 Left Groups 100 Left Groups

10K 50K 100K 10K 50K 100K
0.0
0.1
0.2
0.3

# Tuples

Li
ne

ag
e 

Ca
pt

ur
e

La
te

nc
y 

(s
ec

)

Smoke-D Smoke-D-DeferForw Smoke-I

Figure 7: M:N join latency when all indexes are populated during
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deferred (Smoke-D). These graphs highlight rid array resizing costs.
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Figure 8: Relative overhead of Smoke and logical lineage capture
techniques for TPC-H queries Q1, Q3, Q10, and Q12. Scale factor 1.

of all techniques because the output cardinality is smaller,
but their relative overheads are the same.
Other Operators. Our technical report [75] describes addi-
tional results and operators. The main additional finding
is that it is preferable to overestimate selection cardinality
estimates to avoid array resizings for the selection operator.

6.2 Multi-Operator Lineage Capture
We used four queries from TPC-H—Q1, Q3, Q10, and Q12.

Their physical query plans contain group by aggregation as
the root operator, selections that vary in predicate complex-
ity and selectivity, and up to three pk-fk joins. (Our hash-
based execution precludes sort operations.) Figure 8 summa-
rizes the relative overhead of the best performing Smoke (i.e.,
Smoke-I) and logical (i.e., Logic-Idx) techniques for the four
TPC-H queries. We use scale factor 1.
Overall Results. Smoke-I reduces the lineage capture over-
head as compared to Logic-Idx by up to 22×. In addition,
Smoke-I incurs at most 22% overhead across the four queries.
To make the overhead results meaningful, we have tried to en-
sure that Smoke query engine has respectable performance—
despite row-oriented execution it matches the performance
of single-threaded MonetDB—non-instrumented Q1 runs in
176ms, while the slowest query Q12 runs in 306ms.2 Smoke-

D (not shown) is slower than Smoke-I due to the join cost
between the input and output relations, however it is still
faster than the logical approaches. Finally, although Q1 is
simple (e.g., it has no joins), its results are arguably the most
informative because the plan is simple and has the highest
selectivity, which most stresses lineage capture.
Impact of selections in lineage capture. We found that
the selectivity of the query predicate has a large impact on
the overhead of the logical approaches. Q1 shows a setting

2The purpose is not to compare Smoke with MonetDB, but to
suggest that the reported overheads are with respect to reasonable
baseline performance.

Figure 9: Lineage query latency for varying data skew (θ). Lazy

has a fixed cost to scan the input relation and evaluates the simple
selection predicate on the group-by key z=?. Logic-Rid and Logic-

Tup performs the same selection but on annotated output relations.
Smoke-L is mainly around 1ms, and outperforms Lazy, Logic-Rid,
and Logic-Tup by up to five orders of magnitude for low selectivity
lineage queries. The crossover point at high selectivities is due to
the overhead of Smoke-L’s index scan. Smoke-L is a lower bound for
Phys-Bdb that incurs extra costs for reading lineage indexes.

where the predicate has a high selectivity, thus the input to
the subsequent aggregation operator has a high cardinality,
each output group depends on a larger set of input records,
and ultimately leads a large amount of data duplication to
create the denormalized lineage graphs. In contrast, the other
queries have low predicate selectivity, thus the cardinality of
the subsequent aggregation operator is small and leads to a
substantially smaller lineage graph. Smoke is less sensitive to
this effect because its lineage indexes represent a normalized
lineage graph and avoids this duplication.

Lineage Capture Takeaways (Sections 6.1 and 6.2): Smoke-
based techniques outperform both logical and physical approaches
by up to two orders of magnitude: Logical approaches that adhere
to the relational model are affected by the denormalized lineage
graph representation, extra indexing steps, and expensive joins.
The physical approaches are affected by virtual function calls
and write-inefficient lineage indexes. We find that array resizing
contributes to a large portion of Smoke overheads, and accurate
or overestimated cardinality estimates can reduce resizing costs.

6.3 Lineage Query Performance
We now evaluate the performance of different lineage query

techniques. Recall that lineage queries are a special case of
lineage consuming queries. We evaluate the query: SELECT
* FROM Lb(o∈ Q (zipf), zipf), where Q (zipf ) is the
query used in the group-by microbenchmark (Section 6.1.1).
o is an output record (a group). zipf contains 5000 groups,
10M records, and we vary its skew θ. Varying θ highlights the
query performance with respect to the cardinality of the back-
ward lineage query. Figure 9 reports lineage query latency
for all 5000 possible o assignments and different θ values.
Smoke-L evaluates the lineage query using a secondary

index scan—it probes the backward index, and uses the input
rids as array offsets into zipf. Recall that Smoke-L refers to
any of Smoke-I, Smoke-D, Logic-Idx, or Phys-Mem (Section 5).
Smoke-L vs Lazy. In contrast to Smoke-L, Lazy performs a
table scan of the input relation and evaluates an equality pred-
icate on the integer group key. This is arguably the cheapest
predicate to evaluate and constitutes a strong comparison
baseline. We find that Smoke-L outperforms Lazy up to five
orders of magnitude, particularly when the cardinality of the



output group is small. We expect the performance differences
to grow when the base query uses more complex group keys
that increase the predicate evaluation cost [14,47,52], or when
the input relation is wide, which increases scan costs. There
is a cross over point when the input relation is highly skewed
(θ ∈ {0.8,1.6}) and the backward lineage of some groups have
high cardinality. This increases Smoke-L’s secondary index
scan cost as compared to a linear table scan that can benefit
from scan pre-fetching.
Smoke-L vs Logical Approaches. We also report the cost
of scanning the annotated relations generated by Logic-Rid

and Logic-Tup (highest two lines). Scanning these relations
to answer lineage queries is worse than Lazy because the
annotated relation is wider than the input relation, yet they
have the same cardinality. Note that indexing the annotated
relation is Logic-Idx, and represented by Smoke-L.
Smoke-L vs Physical Approaches. Phys-Mem is included as
part of Smoke-L, so we report Phys-Bdb. Using an external
lineage subsystem to perform a lineage query, we need to per-
form function calls to the external system to fetch the input
rids for an output. As long as we have the input rids, we
can perform a secondary index scan to evaluate the lineage
query similarly to Smoke-L. In our experiments, we compare
both fetching all input rids in a single function call, and with
consecutive function calls to fetch the rids in a cursor-like
fashion. The cursor-like approach outperformed the bulk ap-
proach since it avoids allocation costs for input rids. Smoke-L
provides a lower bound for Phys-Bdb: both perform the same
secondary index scan but Phys-Bdb pays the cost of function
calls to the external lineage subsystem, and has worse lineage
index read performance due to the B-Tree of BerkeleyDB.

Lineage Query Takeaways: Smoke outperforms logical and lazy
lineage query evaluation strategies by multiple orders of magni-
tude, especially for low-selectivity lineage queries. We believe
Smoke is a lower bound for physical approaches by avoiding
functions calls and using read-efficient indexes.

6.4 Workload-Aware Optimizations
We explore the effectiveness of the data skipping and group-

by push-down optimizations by incrementally building up
an example motivated by the “Overview first, zoom and filter,
details on demand” [80] interaction paradigm. We focus only
on zoom and filter because the base query generates the initial
overview, while details on demand is the simple backward
lineage query evaluated in Section 6.3. We report selection
push-down and pruning in our technical report [75].

We use TPC-H Q1 as the initial “Overview” base query,
and we render its output groups as a bar chart; there are
four bars each generated from 48%, 24%, 24%, and 0.06% of
the Lineitem input relation. Subsequent user interactions
(zoom by drilling down, filter by adding predicates) will be
expressed as lineage consuming queries that incrementally
modify its preceding lineage consuming query.
NoOptimization. We start off by evaluating the effectiveness
of using lineage indexes (without optimizations) as compared
to the lazy approach for lineage consuming queries (not plot-
ted). Suppose the user will be interested in drilling into a
particular bar to see the statistics broken down by month
and year of the shipping date. This can be modeled as a lin-
eage consuming query Q1a that extends Q1 in two ways: (1)
replace the input relation with the backward lineage of the
bar that the user is interested in (i.e., Lb(oa ∈Q1(Lineitem),
Lineitem)) and (2) add Month, Year to the GROUP BY.
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Figure 10: Lineage consuming query latency for different instru-
mentation approaches as the lineage consuming query’s selectivity
varies. Lazy requires full table scans, No Data Skipping performs
more efficient secondary index scans, and Data Skipping is ≤ 150ms
because it only scans the relevant partition of the lineage index.

We evaluate Q1a for every value of oa. Lazy runs Q1a as a
table scan followed by filtering on Q1’s group by keys, group-
ing on year and month, and computing the same aggregates as
Q1. Smoke-I is best when the group cardinality is low (0.06%
selectivity) and outperforms Lazy by 6.2×. Higher cardinal-
ity groups incur random seek overheads. The performance
converges for high cardinality because the performance is
dominated by the query processing costs (i.e., aggregation in
this case). To address the overhead of high cardinality lineage
queries, we next evaluate workload-aware optimizations.
Data skipping. Suppose we know that the user wants to fil-
ter the result of Q1a (say, based on interactive filter widgets),
then we can push this logic into lineage capture using the
data skipping optimization. We evaluate Q1b, which extends
Q1a with two parameterized predicates: l_shipmode =
:p1 AND l_shipinstruct = :p2. Q1 is the base query
for Q1b. To exercise push-down overheads, both are text
attributes and thus more expensive to evaluate than for nu-
meric attributes. The lineage capture overhead was 0.22× for
Smoke-I, and 1.65× with the data skipping optimization due
to the additional cost of partitioning the rid arrays on the text
attributes, but still lower than logical approaches (Figure 8).

Figure 10 plots the lineage consuming query latency vs the
selectivity of every possible combination of the predicate pa-
rameters. The Lazy baseline executes the lineage consuming
query as a filter-groupby query over a table scan of Lineitem.
Although lineage indexes substantially reduce query latency
(No Data Skipping in Figure 10)—particularly for low pred-
icate selectivities—it is bottlenecked by the secondary scan
costs of backward lineage for high cardinality groups. In
contrast, data skipping reduces even high selectivity queries
by at least 2× compared to Lazy, and is consistently below
the interactive 150ms threshold [56]. This is because rid ar-
rays are partitioned by l_shipmode, l_shipinstruct,
so that the lineage query only performs an indexed scan over
the rids needed to answer the query.
Aggregation push down. After users filter and identify inter-
esting statistics from the filter interactions in Q1b, they may
want to drill down further. If we know this upfront, Smoke
may pre-compute aggregates for new dimensions during lin-
eage capture. To this end, we define Q1c by adding l_tax to
the group by clause in Q1b, and setting the input relation to
Lb(oc ∈Q1b(...),Lineitem). We compare Lazy (rewrites Q1c
as a table scan-based query) against Smoke-I with and without
the group-by optimization. In this setup, the previous lineage
consuming query Q1b is the base query for Q1c.

Figure 11 compares the lineage query latency under Lazy
(red dots) against Smoke-I without the optimization (blue tri-
angles). The push-down optimization is not plotted because
it takes ≈ 0ms (i.e., just fetches the materialized aggregates).
For completeness we vary the parameters of the backward lin-
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Figure 11: Smoke-I reduces the lineage consuming query latency by
72.9× on average as compared to Lazy. With aggregation push-down,
the latency is ≈ 0ms and we do not plot it.
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Figure 12: The average relative instrumentation overhead increases
from 2.9% without to 9.15% with aggregation push-down.

eage statement Lb() for Q1c (Lb(oc ∈Q1a, ...)) as well as for the
base query Q1a (Lb(oa ∈Q1, ...)) of Q1b and report the lineage
consuming query’s latency for all combinations. Although
Lazy takes > 4 seconds per Q1c instance, Smoke-I’s index scan
takes on average 100ms, and 10ms for low selectivity queries.

Pre-computing aggregation statistics is not free—Figure 12
plots the lineage capture latency for both Smoke variants
as compared to the non-instrumented lazy approach. We
report the result for all 4 parameters to the base query Q1a’s
backward lineage statement (Lb(oa ∈ Q1, ...)). The overhead
of Smoke-I is low compared to the cost of partitioning the rid
arrays on l_tax and computing aggregates.

Push-down Takeaways: Our experiments highlight that lineage
indexes are sufficient whenever the lineage cardinality is low for
the complexity of future lineage consuming queries. For higher
lineage cardinalities, our workload-aware optimizations provide
a principled way to push-down computation into lineage capture
and optimize future lineage consuming queries. They also high-
light trade-offs that future optimizers would need consider (see
also open research questions in Section 4.2).

6.5 Smoke-Enabled Applications
We now present evidence that lineage can be used to opti-

mize two real-world applications—cross-filter visualizations
(Section 6.5.1) and data profiling (Section 6.5.2)—enough to
perform on par with or better than hand-tuned, application-
specific implementations. We highlight the main results here,
and defer details to the technical report [75].

6.5.1 Crossfilter
Crossfilter is an important interaction technique to help

explore correlated statistics across multiple visualization
views [20]. In the common setup, multiple group-by queries
along different attributes are each rendered as e.g., bar charts.
When the user highlights a bar (or set of bars) in one view, the
other views update to show the group-by results over only
the subset that contributed to the highlighted bar(s). This is
naturally expressed as backward lineage from the highlighted
bar, followed by refreshing the other views by executing the
group-by queries on the lineage subset.

Since the views are fundamentally aggregation queries,
recent research have proposed variations of data cubes to

Figure 13: Cumulative latency of different crossfiltering techniques.
BT+FT outperforms all approaches with the total time to perform the
initial group-by aggregates, track lineage, and evaluate all interac-
tions being thirty seconds.

accelerate the interactions [55, 57, 71], however it can take
minutes or hours to construct the cubes. Such offline time is
not available if the user has loaded a new dataset (e.g., into
Tableau) and wants to explore using cross-filter as soon as
possible. This has recently been referred to as the cold-start
problem for interactive visualizations [7].
Setup. Following previous studies [55, 57, 71], we used the
Ontime dataset and four group-by COUNT aggregations on
<lat, lon> (65,536 bins), <date> (7,762 bins), <departure
delay> (8 bins), and <carrier> (29 bins); only 8,100 bins have
non-zero counts because <lat, lon> is sparse. Each group-by
query corresponds to one output view. This setup favors cube
construction because it involves only four views and coarse-
grain binning on spatiotemporal dimensions (which decreases
the number of cubes, and increases group cardinalities). We
report the individual (Figure 13) and cumulative (Figure 14)
latency to highlight each and every bar, respectively. The
experiment was run on our server-class machine so that the
dataset can fit in memory.
Techniques. We compare the following: Lazy uses lazy lin-
eage capture and re-executes the group-by queries on the
lineage subset. BT uses Smoke to capture backward lineage
indices, but re-runs the group-by queries (which requires
re-building group-by hashtables). BT+FT also captures for-
ward lineage indices that map input records to the output
bars that they contribute to, which can be used to incremen-
tally update the visualization bars without re-running the
aggregation query. Finally, we compare with Data Cube con-
struction. We first ran imMens [57], NanoCubes [55], and
hashedcubes [71] to construct the data cubes, however im-

Mens and NanoCubes did not finish within 30 minutes, while
hashedcubes required 4 minutes. For this reason, we im-
plemented a custom partial cube construction based on our
group-by aggregation push-down optimization that took 1.6
minutes to construct. This construction resembles the low
dimensional cube decomposition described by imMens, but
using the sparse encoding recommended by NanoCubes.
Main Results. We make four main observations. First, BT
outperforms Lazy by leveraging the backward index to avoid
table scans, and is consistent with our TPC-H benchmarks.
Despite the overhead of forward index capture, BT+FT outper-
forms BT because the forward index lets Smoke directly up-
date the associated visualization bars without the need to re-
run aggregation queries (and re-build group-by hash tables).
Although the Data Cube response time is near-instantaneous,
the offline construction cost is considerable and BT+FT is able
to complete the benchmark before the cube is constructed
(Figure 13). Second, BT+FT performs best (< 10ms) when
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Figure 14: Latency for each 1D brushing crossfilter interaction.
Dashed lines correspond to 150ms interaction layer. BT+FT performs
under the 150ms interaction layer for all 8,100 but 5 interactions,
with interactions on the spationatemporal dimensions to be <10ms.
Data Cube has instantaneous response time and we do not plot it.

group-by queries output many groups (e.g., lat/lon, day) be-
cause they reduce group cardinality. This suggests that lin-
eage can complement cases when data cubes are expensive (a
cube dimension contains many bins) by computing the results
online. Third, Figure 14 shows that BT+FT responds within
< 150ms (dotted line) for all but five bars, whose lineage de-
pends on a large subset of the input tuples (>10% selectivity;
>13M tuples). Fourth, the capture overhead for BT+FT and
BT on base visualization queries are relatively low (< 2× using
Smoke-I). We expect that optimizations that leverage paral-
lelization, sampling, or deferred capture scheduled during
user “think time” can further reduce the capture costs.

6.5.2 Data Profiling Applications
Data profiling studies the statistics and quality of datasets,

including constraint checking; data type extraction; or key
identification. Recent work, such as UGuide [83], proposes
human-in-the-loop approaches towards mining and verifying
functional dependencies, and present users with examples of
potential constraint violations to double-check. This exper-
iment compares UGuide with Smoke on a lineage-oriented
specification of a data profiling problem.
Setup. We evaluate the following task: given a functional
dependency (FD) A → B over a table T and an FD evalu-
ation algorithm that outputs the distinct values a ∈ A that
violate the FD, our goal is to construct a bipartite graph that
connects the violations a with the tuples {t ∈ T | t.A = a}.
Collectively, for a set of given FDs, this construction leads
to a two-level bipartite graph connecting FDs and violations
to tuples responsible for the violations. We compare Smoke-
based approaches with UGuide’s implementation3. Based on
correspondence with the authors, it turns out that UGuide

internally creates data structures akin to the lineage indexes
that Smoke captures. This makes sense because it mirrors a
lineage-based description of the problem.
Techniques. FD violations for A → B can be identified by
transforming the FD into one or more SQL queries. We con-
sider two rewrite approaches. The simple approach (CD) runs
the query Qcd=SELECT A FROM T GROUP BY A HAVING
COUNT(DISTINCT B) > 1; backward and forward lineage
indexes correspond to the bipartite graph above.

3
UGuide proposed novel algorithms for mining and verifying

functional dependencies, and implemented a fast version of the data-
profiling task using Metanome [72]. Although latency was not their
focus, the system was optimized for performance, so we believe it is a
reasonable comparison baseline.
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Figure 15: Latency of different approaches for FD violation eval-
uation and bipartite graph construction. Smoke-CD is the minimal
overall. Metanome-UG is affected by virtual function calls for lineage
capture, the overheads of JVM, and its data model.

UGuide implements an optimization which, although not
modeled as lineage, effectively simulates lineage indexes. We
thus describe the second approach (UG) in lineage terms.
We first evaluate Qug,attr=SELECT DISTINCT attr FROM
T for attr∈ {A,B}, and capture lineage. We backward trace
each a ∈Qug,A to the input T , and forward trace each lineage
record to Qug,B. If there are more than one distinct b values
in the forward trace output, then the FD is violated. The
lineage indexes also correspond to the desired bipartite graph.
The UG implementation is typically faster than CD for FD
mining because UG explicitly builds lineage indexes once per
attribute and reuses them across FD checks. Our experiments
report the cost of individual FD checks and the cost to con-
struct the bipartite graph, however the relative findings are
expected to grow wider for multi-FD checks. We compare
Smoke using both approaches (Smoke-CD, Smoke-UG) with
UGuide that implements the UG approach (Metanome-UG).
Main Results. Figure 15 evaluates the techniques using four
functional dependencies over the Physician dataset used in
the Holoclean [76] paper. Overall, Smoke-UG outperforms
Metanome-UG by 2 − 6× while the simpler Smoke-CD ap-
proach outperforms both approaches. Both Smoke capture
overheads are consistent with our microbenchmarks (< 1.2×
overhead). There are several reasons why Smoke-UG outper-
forms Metanome-UG. Metanome-UG incurs virtual function
call costs when constructing its version of lineage indexes
(> 2× overhead on Qug,attr that we implemented in UGuide),
as well as general JVM overhead even after a warm-up phase
to enable JIT optimization. Further, Metanome-UG models
all attribute types as strings, which slows uniqueness checks
for integer data types such as NPI. For fairness, the other
three FDs are over string attributes (zip is a string).
Application Takeaways: Lineage can express many real-world
tasks, such as those in visualization and data profiling, that are
currently hand-implemented in ad-hoc ways. We have shown
evidence that lineage capture can be fast enough to free developers
from implementing lineage-tracing logic without sacrificing, and
in many cases, improving performance.

7. CONCLUSIONS AND FUTURE WORK
Smoke illustrates that it possible to both capture lineage

with low overhead and enable fast lineage query performance.
Smoke reduces the overhead of fine-grained lineage capture
by avoiding shortcomings of logical [9, 21, 31, 32, 35, 66, 86]
and physical [43, 44, 45, 46, 58, 89] approaches in a principal
manner, and is competitive or outperforms hand-optimized
visualization and data profiling applications. Smoke also
contributes to the space of physical database design [3, 4, 15,
25, 42, 51, 59, 62, 69, 73, 79, 84] by being the first engine to
consider lineage as a type of information for physical design
decisions. Our capture techniques and workload-aware opti-
mization make Smoke well-suited for online; adaptive; and
offline physical database design settings. Finally, we believe



the design principles used in the development of Smoke (P1-
P4 in Introduction) are broadly applicable beyond our design.

There are many areas for future work to explore: 1) leverage
modern features such as vectorized and compressed execu-
tion, columnar formats, and UDFs [77], 2) develop cost-based
techniques to instrument plans in an application-aware man-
ner (e.g., Defer is best-suited for speculation in-between inter-
actions), 3) model database optimization policies (e.g., statis-
tics computation, cube-construction, key indexes) as lineage
queries, and 4) extend support to data cleaning, visualization,
machine learning, and what-if [6, 24] applications.
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APPENDIX
Our appendix material covers several details that we did not
include in the main body as well as extensions of our tech-
niques, discussion of open problems, additional experiments,
and related work. More specifically, we first provide back-
ground on the query compilation model that Smoke employs
(Appendix A) and how we tuned techniques (Appendix B).
Furthermore, we provide a more detailed description of (a)
the TPC-H Q1 variants, that we used in our experiments
with workload-aware optimizations, (Appendix C) and (b) the
crossfiltering techniques (Appendix D). In addition, we show
how our workload optimizations can be used to encode differ-
ent provenance semantics (Appendix E) and how Smoke per-
forms lineage capture for bag and set union; intersection; and
difference as well as lineage capture with nested-loop eval-
uation to support θ−joins and cross products (Appendix F).
We conclude with additional experiments (Appendix G) and
related work (Appendix H).

A. QUERY COMPILATION
One of the main design principles that we realized in Smoke

is the tight integration of the lineage capture logic with the
query execution logic. In this section, we give a brief back-
ground on the query compilation and push-based execution
model that Smoke leverages to realize this principle. (How-
ever, note that our techniques are not bound to this execution
model. Based on this execution model we better describe tun-
ing techniques of alternative logical and physical approaches
for lineage capture in the next section. Readers familiar with
query compilation concepts can skip to the next section.)

Query compilation combines query optimization and ex-
ecution with low-level compiler-based optimizations (e.g.,
LLVM, LSM, GCC). It replaces query interpretation [41] with
a compilation phase that transpiles queries into intermediate
representations (IR) such as C, C++, or LLVM IR, that are
further optimized by a standard compiler, and an execution
phase than runs the query as a binary executable. Each opera-
tor in the physical plan emits its intermediate representation
that implements its logic, and the engine emits glue code to
combine operator inputs and outputs. Many modern database
systems [5, 30, 36] have taken this approach, and continues to
be an active research area [53] with positive results.

Query compilation systems typically implement operators
using the producer-consumer code generation model [64] to
derive a push-based execution model that is in contrast to

the pull-based iterator [33], batch [70], or full-column [60]
execution models of traditional query interpreters. Each oper-
ator exposes two functions: produce triggers child operators
to produce tuples or data structures with the appropriate
schema, and consume emits execution logic to process its
inputs and hand the result to the parent consume methods.
Borrowing the example from Neumann [64], the following
generates pseudo code for the σ and scan operators:
σ.produce σ.input.produce
σ.consume(a,s) print ‘if ’+σ.condition;

σ.parent.consume(a, σ)
scan.produce print ‘for t in relation’

scan.parent.consume(attrs, scan)

The compilation phase will call the root operator’s
produce method to emit IR that generates result tuples. Con-
sider compiling the physical plan σp(scan(T )). σ.produce
calls scan.produce, which emits the for loop over T and
calls σ.consume to consume the tuples of the scan. Then,
σ.consume inlines the selection over tuples of T in the for
loop. The final emitted pseudocode will be:
for t in relation

if p(t)
<σ’s parent logic>(t)

Operators such as hash aggregation and the building side
of hash joins are called pipeline breakers because the entire
pipeline (i.e., all operators up to the pipeline breaker) needs
to materialize its end result before the next pipeline can start
operating. Each pipeline defines a separate code block in
the final emitted program code, where each code block is a
separate for loop (similar to the example above).

Finally, it is important to note that interpretation-based
execution models can also enable the tight integration princi-
ple by introducing new physical operators similar to the ones
we presented in Section 3.2. Designing such a system is an
interesting future direction.

B. TUNING
Having provided a basic background on the query com-

pilation and execution model of Smoke, in this section we
present low-level optimization details that we enabled for
lineage capture techniques. We start with logical approaches,
then discuss Smoke-based optimizations, and conclude with
physical approaches.
Tuning logical techniques. In our preliminary experiments
we used Perm and GProm as they are implemented over Post-
gres 8.3 and a commercial database system, respectively. Un-
fortunately, both systems exhibit increased lineage capture
overhead for reasons intrinsic to the underlying DBMSs which
are not related to the principals behind the logical rewrite
rules of Perm and GProm.

In particular, we observed increased lineage capture over-
head due to (a) the added complexities from the transactional
processing layers of full-fledged database systems [39] and (b)
no flexibility in reusing data structures in the same physical
query plan; reusing data structures is important for lineage
capture, as we also noted for our techniques in Section 3.
For these reasons, we implemented the rewrite rules of Perm
and GProm in Smoke because (a) it does not incur the over-
head of the transactional processing layers of a full-fledged
database and (b) reuses data structures within the same query
plan—hence, enables a fair comparison of only the princi-
pals behind Smoke and logical lineage capture techniques
having fixed the underlying execution engine. Finally, we
note that our implementation of logical alternatives in Smoke



outperforms the available versions of Perm and GProm by
two orders of magnitude because it avoids these caveats. For
instance, Logic-Rid and Logic-Tup for 1m tuples and 1000
groups in our group-by aggregation microbenchmark take
< 200ms while Perm and GProm take 25s −45s. (depending
on optimization knobs.)

Figure 16: Physical plans derived for logical approaches for the
lineage capture of γa,b,count(1)(A ./ B): (a) non-optimized and (b)
optimized plan generated by Smoke. Boxes P1-P9 correspond to indi-
vidual pipelines per the query compilation model. The index i of a
pipeline Pi denotes the order of execution in the compiled plan.

To better explain the optimizations that we implemented
for logical approaches, consider the following query which
has the same structure with the queries that we used for
our multi-operator experiments: γa,b,count(1)(A ./ B), where
a ∈ sch(A) and b ∈ sch(B); sch(X) denotes the schema (i.e., set
of attributes) of relation X. Furthermore, let the join between
A and B to be a pk-fk natural join.

Perm’s re-rewrite rule for this query results in the following
query: ρa/a′ ,b/b′ (γa,b,count(1)(A ./ B)) ./

a=a′∧b=b′
(A ./ B); ρp/p′

denotes the relational rename operation of the attribute p to
p′ . Figure 16 shows the corresponding non-optimized and
optimized physical plans that Smoke produces for this query.
Similar non-optimized physical plans, with the same lack of
optimizations, are produced by Perm and GProm. Next, we
describe the set of optimizations to derive the optimized plan.

First, Perm joins the output of the aggregation with the join
A ./ B on the same attributes that the hash table was built on
for the group-by aggregation. This allows us to reuse the hash
table to join the output of the join A ./ B with the aggregation
result. As such, the built of the hash table at pipeline P5 can
be eliminated as we can reuse directly the hash table that was
built during pipeline P2. Second, consider the materialization
of the output at pipeline P8 and the materialization of the
same output at P7. This is the exact output of the base query.
P8 is more costly than P7 due to the projection on a, possibly,
large O′ relation. Hence, we can eliminate P8 and provide
the output result O by executing P4. Finally, note that the
two natural joins between the tables A and B are the same.
Hence, if we materialize the join output there is no need to
perform again the join. In our experiments we found that
joins are costly to materialize. As an alternative we re-used
the hash table built for the inner table A and probed only the
outer table B which resulted in the best performance in our
experiments with the TPC-H queries. In general, for all n-way

joins we materialized the last hash table and probed only the
rightmost table in the left-deep plans that Smoke produces.

Note that the set of optimizations that we presented above
can be enabled by any DBMS. This means that there is no
intrinsic problem with the re-write rules of Perm and GProm,
beyond the ones that we described in Section 2 and experi-
mentally showed in our experiments. Rather, DBMSs, on top
of which logical systems are built, need to perform low-level
optimizations of physical plans. This is why we did not com-
pare against systems that do not enable these optimizations
and directly optimized logical alternatives within Smoke.

Tuning Smoke techniques. In Section 3.3 we noted that
Smoke specifically optimizes SPJA queries with pk-fk joins.
Note that the set of optimizations presented above are also en-
abled by Smoke for Smoke-D. The difference is that Smoke-D
does not need to materialize O′ as in P7. Instead, it com-
bines together P7 and P9 to build directly lineage indexes
and always outperforms the logical approaches even with
the optimizations because it avoids storing the denormalized
representation that logical approaches perform. Furthermore,
in our experiments we discussed that Smoke-I oupterforms
Smoke-D in TPC-H queries that we experimented with. For
these TPC-H queries, Smoke-I results in annotating interme-
diate hash-tables with rids as part of lineage capture for joins
and the final aggregation operator uses these rids to perform
the Inject method. Hence, Smoke-I avoids the expensive join
of Smoke-D and outperforms it.
Tuning physical techniques. Similarly to logical techniques,
we have also implemented Phys-Mem and Phys-Bdb within
Smoke. More specifically, for a compiled query plan as gen-
erated by Lazy, we instrument it with virtual function calls
to emit lineage (i.e., <output, input> rids). Then, assume
that we want to capture backward lineage. For one-to-many
relations between output and input, Phys-Mem probes a hash
table on the output rid. Each entry in the hash table keeps a
pointer to an rid index that we use to append the input rid.
For one-to-one relations, we use an rid list where we append
the input rid. In contrast, Phys-Bdb, adds the <output, in-
put> rids in BerkeleyDB with the key being the output rid.
(For forward lineage the process is the same but we probe
on the input rids and we append output rids.) For our ex-
periments, we used BerkeleyDB 12.1 that we instructed to
(a) be in-memory with cache size 0.5GiB (which is sufficient
to avoid spooling to disk) and (b) use B-Tree as its internal
indexing structure. Essentially, both approaches are similar
to Smoke-I but Phys-Mem implements the capture logic of
Smoke-I in a virtual function instead of having it inline in
the compiled plan while Phys-Bdb uses the B-tree indexes of
BerkeleyDB instead of the lineage indexes of Smoke.

C. VARIANTS OF TPC-H Q1
In Section 6.4 we evaluated the optimizations of Smoke on

three variants of TPC-H Q1, namely, Q1a; Q1b; and Q1c, and
compared them with lazy lineage query approaches. Here,
we give a more detailed description of these queries and their
lazy alternatives. First, we give a brief background on lazy
alternatives [21, 43].
Lazy lineage capture. Consider a base group-by aggregation
queryO = γg1,...,gn,F (I), where g1 . . . gn are group-by attributes
and F is the set of aggregation functions. A backward lin-
eage query LB(o ∈O,I) for a given output o ∈O is equivalent
to Olazy = σo.g1=I.g1∧...∧o.gn=I.gn (I). Furthermore, if the base
queryO includes selections, these selections need to be added



in the selection clause of Olazy. Essentially, instead of ac-
cessing lineage through indexes as in the eager approaches
of Smoke, the lazy approaches access lineage with selection
scans on base relations. Similar are the equivalence rules
for backward (or forward) lineage queries on top of joins,
selections, projections, or general workflows [21, 43].

Now, recall that TPC-H Q1 is specified as shown below
(Smoke’s hash-based evaluation precludes sorting and ORDER
BY clauses are omitted):

Q1 = SELECT
l_returnflag, l_linestatus,
sum(l_quantity) as sum_qty,
sum(l_extendedprice) as sum_base_price,
sum(l_extendedprice*(1-l_discount))

as sum_disc_price,
sum(l_extendedprice*(1-l_discount)*(1+l_tax))

as sum_charge,
avg(l_quantity) as avg_qty,
avg(l_extendedprice) as avg_price,
avg(l_discount) as avg_disc,
count(*) as count_order

FROM lineitem
WHERE l_shipdate < '1998-12-01'
GROUP BY

l_returnflag,
l_linestatus

The output of Q1 is four groups derived from
combinations of l_returnflag and l_linestatus (i.e.,
{(A,F), (N,O), (R,F), (N,F)}).
Q1a drills down from Q1 on the year and month of

l_shipdate given an output group of Q1. Using with the back-
ward lineage query construct this operation can be specified
as follows:

Q1a = SELECT ...,
extract(year from l_shipdate),
extract(month from l_shipdate)

FROM Lb(Oi ⊆ Q1 ,lineitem)
GROUP BY
extract(year from l_shipdate),
extract(month from l_shipdate)

For the eager approach of Smoke, Q1a is evaluated using only
the lineage indexes that we construct during the execution
of Q1. As a result, we do not need to add the selections
specified in Q1 in Q1a because the backward lineage will
retrieve tuples of lineitem that satisfy these selections.

Now, regarding the lazy approach to evaluate Q1a, recall
that a backward lineage for a group-by aggregation queryO =
γg1,...,gn,F (I) can be specified lazily as σo.g1=I.g1∧...∧o.gn=I.gn (I).
By applying this rule on Q1a we derive its lazy alternative:

Q1a−lazy =

SELECT ...,
extract(year from l_shipdate),
extract(month from l_shipdate)

FROM lineitem
WHERE

l_shipdate < ’1998-12-01’ and
l_linestatus = ? and
l_returnflag = ?

GROUP BY
extract(year from l_shipdate),
extract(month from l_shipdate)

Given an output group of Q1 we can parameterize the se-
lections above and evaluate Q1a using a selection scan on
lineitem (as opposed to the indexed scan using our Smoke

techniques). Finally, note that in our experiments we consid-
ered backward lineage queries to be specified for only one
output group of Q1. This avoids disjunctive selections on

l_linestatus and l_shipdate (e.g., change the single se-
lection l_linestatus = ? above to l_linestatus IN
(. . .)), since we only need to backward trace to tuples that
contribute only to one group. However, in the general case,
lazy approaches need to consider these expensive disjunc-
tions. In contrast, eager approaches have access to tuples of
each group through the lineage indexes and do not require to
re-calculate groups with expensive selections.

Following the logic of Q1a above we similarly derived the
eager and lazy alternatives ofQ1b andQ1c. For completeness,
we list them below without further discussion.

Q1b =
SELECT ... FROM Lb(Q1′ ⊆ Q1,lineitem)
WHERE l_shipinstruct = ? and

l_shipmode = ?
GROUP BY ...

Q1b−lazy =
SELECT ... FROM lineitem
WHERE l_shipdate < ’1998-12-01’

l_shipinstruct = ? and l_shipmode = ? and
l_linestatus = ? and l_returnflag = ?

GROUP BY ...

Q1c =
SELECT ... FROM Lb(Q1b

′ ⊆Q1b,lineitem)
GROUP BY ..., l_tax

Q1c−lazy =
SELECT ... FROM lineitem
WHERE l_shipdate < ’1998-12-01’ and

l_shipinstruct = ? and l_shipmode = ? and
l_linestatus = ? and l_returnflag = ? and
extract(year from l_shipdate) = ?
extract(month from l_shipdate) = ?

GROUP BY ..., l_tax

D. CROSSFILTERING USING LINEAGE
In Section 6.5.1, we introduced two techniques (i.e., BT and

BT+FT) for crossfiltering using lineage that we compared with
the Lazy approach. In this section, we give a more detailed
technical discussion. Figure 17 shows the proposed physical
plans (i.e., BT and BT+FT) for crossfiltering alongside the
naive approach (i.e., Lazy) and drives our discussion.

Consider a set of queries Q = {Qx | Qx = SELECT Gx,
Fx(Jx) FROM T GROUP BY Gx} for which we seek to sup-
port crossfiltering functionality,
Lazy. During the execution of each Qx, Lazy simply exe-
cutes the group-by aggregations without capturing lineage.
Then, given a selection of a subset of outputs of Qbrushed ∈ Q
(i.e., Q′brushed ⊆ Qbrushed), Lazy supports crossfiltering by
updating each Qx ∈ Q\ {Qbrushed} as follows:

Qx’=SELECT Gx, Fx(Jx)
FROM T
WHERE

∧
o∈Q′brushed o.Gb = T .Gb

GROUP BY Gx

Essentially, Lazy supports crossfiltering by performing lazy
lineage capture to identify the partitions of the base relation
that contributed to the selected outputs. Finally, to evaluate
the set of all updated Q′x, Lazy does not execute each update
separately. Rather it uses a shared selection scan of the input
relation with the selection being

∧
o∈Q′brushed

o.Gb = T .Gb to
avoid multiple, expensive selection scans of the base relation.
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Figure 17: Crossfilter evaluation techniques without using
data cubes: (a) Lazy re-evaluates the group-by aggregation
queries with a shared selection scan on the base table, (b)
BT uses an index scan on the rids of the backward lineage
index of Q′brushed, (c) BT+FT performs updates using the
fordward indexes that connect each tuple in the base table to
each output of aggregation query.

During the execution of initial group-by aggregations, BT
and BT+FT perform lineage capture in order to to use lineage
indexes for crossfiltering.
BT. As we noted above, Lazy supports crossfiltering with lazy
lineage capture. This means that Q′x above is equivalent to
the following query.

Qx’=SELECT Gx,Fx(Jx)
FROM backward_trace(Q′brushed ⊆Qbrushed,T)
GROUP BY Gx

Since we have built a backward index btQbrushed , during the
execution of Qbrushed, then Q′x can be evaluated using an
indexed-scan on the base table T using only the rid arrays of
btQ′brushed

of btQbrushed that correspond to the selected output

recordsQ′brushed. Essentially, with this approach we can avoid
the selection scans of Lazy with indexed scans from lineage.
Similarly to Lazy, BT uses a shared scan but this time a shared
indexed-scan based on btQ′brushed

.

BT+FT. Finally, note that BT still needs to perform group-
by aggregations which is a very costly operation due to the
construction of hash tables. Instead, recall the notion of a
forward lineage index for a group-by aggregation query: Each
tuple in the input is associated with a group in the output. So,
forward indexes provide a perfect hashing between tuples in
the base table and group-by aggregation results that we have
already calculated (i.e., the initial views). Hence, instead of
constructing hash tables, BT+FT uses the forward indexes as
perfect hash tables and performs crossfiltering as follows:

Input: bw[][] // backward index for Q′brushed
fw[][] // forward indexes from each tuple

// to groups of each initial
// group-by aggregate

Q1 , . . . ,Qn // outputs of initial views
Output: Q′1 , . . . ,Q

′
n // crossfiltered views

Init Q′1 , . . . ,Q
′
n using Q1 , . . . ,Qn

for i = 0 to bw.size()
for j = 0 to bw[i].size()

for z = 0 to n
agg_update(Q′z[fw[Qz][bw[i][j]]])

remove_non_affected_groups(Q′1 , . . . ,Q
′
n)

Listing 1: Crossfilter using BT+FT.

agg_update() in the listing above simply updates the
aggregation (e.g., for COUNT(*), agg_update is sim-
ply Q′z[fw[Qz][bw[i][j]]]++). Finally, note the
remove_non_affected_groups function at the end of the
listing above. This function loops over the groups of each
updated group-by and removes the groups that were not

affected by the group-by. In the case of COUNT(*) this is
simply the groups that have a zero count. For other aggre-
gates, like SUM, we need to track which groups were updated
within the agg_update functions. However, in most inter-
active visualizations it is more important to maintain the
groups even if the have a zero count (or a zero sum). In that
case the remove_non_affected_groups can simply by ig-
nored and the agg_update can perform the update without
updating a state of what groups were updated. Our experi-
ments in Section 6.5.1 report the latency of BT+FT including
the time for this operation.

E. LINEAGE SEMANTICS IN SMOKE
In Section 2, we noted that Smoke uses transformation

provenance semantics that can allow us to encode several
novel provenance semantics at the will of end-developers.
Here, we give a brief discussion on how one can go about
encoding new semantics in Smoke.

Consider the following example query and database:
SELECT COUNT(*), A.cname, B.pname FROM A.cid
= B.id GROUP BY A.cname, B.pname.

cid cname
a1 1 Bob
a2 2 Alice

oid cid pname date
b1 1 1 iPhone 12/25
b2 2 1 iPhone 12/25
b3 3 2 XBox 12/25

The output of this query is the following:

COUNT(*) A.cname B.pname
o1 1 Bob iPhone
o2 2 Alice xBox

According to Smoke’s provenance semantics the backward
index for o1 with respect to table A contains the tuple rid a1
twice. This is important because in this way Smoke can encode
multiple provenance semantics. The why-provenance of o1
is {(a1,b1), (a1,b2)} and to answer why-provenance queries
Smoke simply concatenates the backward index rids: rids
at the same position in the backward indexes for A and B
correspond to the why-provenance witnesses. Now, the which-
provenance of o1 is {a1,b1,b2} which Smoke can derive by
performing a set union of the backward indexes. Finally, the
how-provenance of o1 is a1 · (b1 + b2) which Smoke can derive
by set unioning and concatenating the backward rid indexes,
similarly to the operations for which- and why-provenance.

Now, note that all these operations to derive different prove-
nance semantics are lineage consuming queries whose logic
we can push down as workload-aware optimizations simi-
lar to the ones in Section 4. In which case Smoke operates
as a which-, why-, or how-provenance system for the case
illustrated above. However, note that depending on the prove-
nance semiring that how-provenance captures, the lineage
consuming logic can be different and expressing semirings as
lineage consuming queries is an open question.

These observations, along with the focus of Smoke to cap-
ture forward lineage, highlight that Smoke provides a general
architecture for novel provenance semantics.

F. INSTRUMENTATION ALGEBRA
In Section 3 we presented the physical algebra of Smoke for

lineage capture of projection, selections, hash-based group-by
aggregations, and hash-based equi-joins. In this section, we
extend this algebra for bag and set union, intersection, and
difference as well as nested-loop θ-joins and cross products.



Input: A, B
Output: O,

a_fw[A.size()], b_fw[B.size()] // forward indexes
a_bw[][], b_bw[][] // backward indexes

Hash Table ht, Hash Function hash
for i = 0 to A.size() // ∪ht: Build phase
h = hash(A[i].uattrs)
if(!ht[h]) ht[h]={init_state(A[i].uattrs),

a_rids=[], b_rids=[]}
ht[h].a_rids.insert(i)

for i = 0 to B.size() // ∪p: Probe/Append phase
h = hash(B[i].uattrs)
if(!ht[h]) ht[h]={init_state(B[i].uattrs),

, a_rids=[], b_rids=[]}
ht[h].b_rids.insert(i)

oid = -1
a_bw = int[ht.size()][]
b_bw = int[ht.size()][]
for (state, a_rids, b_rids) in ht // ∪scan: Scan phase
O[++oid] = create_output_record(state)
a_bw[oid] = a_rids
for rid in a_rids

a_fw[rid] = oid
b_bw[oid] = b_rids
for rid in b_rids

b_fw[rid] = oid

Listing 2: Inject lineage capture for set union A
S⋃

uattrsB.

F.1 Set Union
Set union between two relations A and B (i.e., A

S⋃
uattrsB,

where S denotes set union and uattrs the attributes from A
and B to union on) are implemented in a hash-based way with
consecutive appends to a hash table: Initially, the operator
∪ht builds a hash table using the relation Awith the key being
the attributes of the union (i.e., uattrs). Then, ∪p probes the
hash table constructed by ∪ht on the union attributes using
relation B. If an entry does not already exist for the union
attributes, ∪p appends a new entry in the hash table with
the union attributes. Essentially, ∪ht and ∪b are the same
operator, that probe and append tuples in a hash table. The
only difference is that ∪ht takes as input an empty hash table
while ∪p takes as input a pre-built hash table. Finally, ∪scan
scans the hash table and constructs the output. Next, we
discuss Defer and Inject lineage capture approaches for set
union; Figure 18 shows their corresponding physical plans.
Inject: Listing 2 illustrates the Inject lineage capture of
Smoke for set union. Similarly to group-by aggregation, Inject
rewrites ∪ht to append, besides the union attributes, two
arrays a_rids and b_rids that track which tuples from A
and B, respectively, contribute to the hash table entry. During
∪ht we populate a_rids and during ∪p we populate b_rids.
Finally, ∪scan outputs the result and the lineage indexes.
Defer: Listing 3 illustrates the Defer lineage capture of
Smoke for set union. Similarly to group-by aggregation, Defer

rewrites∪ht and∪p to append an oid to each hash table entry,
initially set to −1, besides the union attributes. Then, ∪scan
outputs the set union result and assigns the correct oid to each
hash table entry. To construct the lineage indexes ./

′
∪ takes

as input the relation A and probes the previously constructed
hash table to find the oid and properly construct the lineage
indexes between the output and input relation A.

Input: A, B
Output: O,

a_fw[A.size()], b_fw[B.size()] // forward indexes

a_bw[][], b_bw[][] // backward indexes
Hash Table ht, Hash Function hash
for i = 0 to A.size() // ∪ht: Build phase
h = hash(A[i].uattrs)
if(!ht[h]) ht[h]={init_state(A[i].uattrs),

oid=-1}

for i = 0 to B.size() // ∪p: Probe/Append phase
h = hash(B[i].uattrs)
if(!ht[h]) ht[h]={init_state(B[i].uattrs),

, oid=-1}

oid = -1
a_bw = int[ht.size()][]
b_bw = int[ht.size()][]
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Figure 18: Inject and Defer plans for set union. Dotted arrows are
only necessary for lineage capture.
for h in ht // ∪scan: Scan phase
O[++oid] = create_output_record(h.state)
h.oid = oid

for i=0 to A.size() // ./′∪: Lineage capture for A
h = hash(A[i].uattrs)
a_bw[ht[h].oid].insert(i)
a_fw[i] = ht[h].oid

for i=0 to B.size() // ./′∪: Lineage capture for B
h = hash(B[i].uattrs)
a_bw[ht[h].oid].insert(i)
a_fw[i] = ht[h].oid

Listing 3: Defer lineage capture for set union A
S⋃

uattrsB.

Similar is the process for ./
′
∪ when taking as input the B to

construct lineage indexes between the output and relation B.
Further optimizations: An optimization, for both Inject and
Defer approaches, is that there is no need to wait to append
the right relation B to the hash table to construct the lineage
indexes for the relation A. This is because the intermediate
hash table built for A suffices for the lineage index construc-
tion for A. For Defer, in particular, this also means that the
join ./U for A will not need to probe a hash table that keeps
not all entries for A but also B. However, this also means that
Defer needs to block the output construction until after the
./U for A has been executed, which is a counter-argument
to the Defer paradigm (i.e., lineage is constructed without
blocking the query execution). To balance this effect we could
keep a copy of the intermediate hash table for A and use only
that for lineage construction for the A relation at the cost
of copying which could be substantial. Smoke does not yet
support the copy construction but it does support blocking
the set union for the lineage construction.

F.2 Bag Union
Lineage capture for bag union is simpler than lineage cap-

ture for set union. Since for bag union we only concatenate
the two input relations, what we only need to maintain is the
rid of where one relation ends and the other relation begins
in the output of the union. More generally, for bag union of



Input: A, B
Output: O,

a_fw[A.size()], b_fw[B.size()] // forward indexes
a_bw[][], b_bw[][] // backward indexes

Hash Table ht, Hash Function hash
for i = 0 to A.size() // ∩ht: Build phase
h = hash(A[i].iattrs)
if(!ht[h]) ht[h]={init_state(A[i].iattrs),

a_rids=[], b_rids=[]}
ht[h].a_rids.insert(i)

for i = 0 to B.size() // ∩p: Probe phase
h = hash(B[i].iattrs)
if(ht[h]) ht[h].b_rids.insert(i)

oid = -1
a_bw = int[ht.size()][]
b_bw = int[ht.size()][]
for (state, a_rids, b_rids) in ht // ∩scan: Scan phase
if(b_rids.size()==0) continue;
O[++oid] = create_output_record(state)
a_bw[oid] = a_rids
for rid in a_rids

a_fw[rid] = oid
b_bw[oid] = b_rids
for rid in b_rids

b_fw[rid] = oid

Listing 4: Inject lineage capture for set intersection A
S⋂

iattrsB.

k relations we need k − 1 such rids. Using these indexes it
is sufficient to answer both backward and forward lineage
queries. Note, however that this lineage capture relies on the
fact that the input relation is a base relation stored in the
database. For multi-operator plans the input to the union
could be an intermediate relation for which we need to per-
form lineage capture. For instance, for a query σθ(A)

⋃
B, we

need to perform lineage capture for the selection on A.
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Figure 19: Inject and Defer plans for set intersection. Dotted
arrows are only necessary for lineage capture.

Input: A, B
Output: O,

a_fw[A.size()], b_fw[B.size()] // forward indexes
a_bw[][], b_bw[][] // backward indexes

Hash Table ht, Hash Function hash
for i = 0 to A.size() // ∩ht: Build phase
h = hash(A[i].iattrs)
if(!ht[h]) ht[h]={init_state(A[i].iattrs), b_bit = 0

oid=-1}

for i = 0 to B.size() // ∩p: Probe/Append phase
h = hash(B[i].iattrs)
if(ht[h]) ht[h].b_bit=1

oid = -1
a_bw = int[ht.size()][]
b_bw = int[ht.size()][]
for h in ht // ∩scan: Scan phase
O[++oid] = create_output_record(h.state)
h.oid = oid

for i=0 to A.size() // ./′∩: Lineage capture for A
h = hash(A[i].iattrs)
if(!h.b_bit) continue
a_bw[ht[h].oid].insert(i)
a_fw[i] = ht[h].oid

for i=0 to B.size() // ./′∩: Lineage capture for B
h = hash(B[i].iattrs)
if(!h) continue
a_bw[ht[h].oid].insert(i)
a_fw[i] = ht[h].oid

Listing 5: Defer lineage capture for set intersection A
S⋂

iattrsB.

F.3 Set Intersection
Set intersection in Smoke is broken into three operators.

First, ∩ht builds a hash table on the outer relation A with the
key being the attributes of the intersection. Each hash table
entry, beyond the intersection attributes, also maintains a bit
to indicate whether or not it has been matched with a tuple
from the inner relation B. Then, ∩p probes the hash table and
sets the bit if a match was found. Finally, ∩scan scans the hash
table and emits the entries with the bit set to form the output.

Linage capture for set intersection (see Figure 19) follows
the logic of set union (see Figure 18). An important differ-
ence is that for the Inject approach, a_rids that we have
kept for non-matched tuples will be discarded. If the fraction
of tuples in the outer relation that appear in the intersec-
tion is small that could result in the Defer approach to be
faster than Inject because it avoids the unnecessary writes
in a_rids. Also, a slight difference from set intersection
without lineage capture, is that Inject does not require a bit
indicating whether a hash table entry has been matched with
tuples from the outer relation because we maintain b_rids
that provide this information. For completeness, Listings 4
and 5 show code snippets for Inject and Defer, respectively.

F.4 Bag Intersection
Bag intersection in Smoke follows the same logic as the

set intersection. The only difference is that the hash table
needs to maintain two more attributes per entry: (a) the num-
ber of tuples from the outter relation that are duplicates ac-
cording to the intersection attributes, and (b) the number
of matches with the inner relation. ∩ht adds a hash entry
{A[i].iattrs, a_matches=1, b_matches=0} if there
is no prior entry in the hash table for A[i].iattrs, or up-
dates the matches of A (i.e., a_matches++) if there was an
entry for A[i].iattrs. Then, ∩p probes the hash tables
with the tuples from the inner relation B and updates the
b_matches. Finally, ∩scan scans the hash table and outputs
each entry a_matches·b_matches times to provide an out-
put with the correct bag intersection semantics.

Inject: Lineage capture for bag intersection under In-

ject semantics is straightforward. Instead of keeping
a_matches and b_matches we maintain two arrays of
rids (a_rids and b_rids) from where the matches have
originated. As such, a_matches = a_rids.size() and
b_matches=b_rids.size(). Hence, ∩scan can still pro-
vide an output with the correct bag intersection semantics.
Moreover, ∩scan can provide backward and forward indexes
using these rids. Note, however, that while set intersection
has 1-to-N backward lineage, bag intersection has 1-to-1.

Defer: Lineage capture for bag intersection under De-

fer follows the logic of Defer for set intersection. Besides
a_matches and b_matches, each hash entry maintains an
output rid oid of the first tuple in the output for this hash
entry. Note that the output will contain tuples related to
this hash entry at rids [oid, oid+a_matches·b_matches].
Now, the trick is that ./′∩ need to happen in order first with
the A relation and then with B, and for every match we should
increase the oid. For completeness, Listing 6 provides the
corresponding code snippet for Defer.

Input: A, B
Output: O,

a_fw[A.size()], b_fw[B.size()] // forward indexes
a_bw[][], b_bw[][] // backward indexes

Hash Table ht, Hash Function hash
for i = 0 to A.size() // ∩ht: Build phase
h = hash(A[i].iattrs)
if(!ht[h]) ht[h]={init_state(A[i].iattrs),

a_matches=1, b_matches=0,
oid=-1}

else ht[h].a_matches++

cnt=0
for i = 0 to B.size() // ∩p: Probe/Append phase
h = hash(B[i].iattrs)
if(ht[h])
ht[h].b_matches++
cnt+= a_matches

oid = -1
a_bw = int[cnt][]
b_bw = int[cnt][]
for h in ht // ∩scan: Scan phase
O[++oid] = create_output_record(h.state)
h.oid = oid

for i=0 to A.size() // ./′∩: Lineage capture for A
h = hash(A[i].iattrs)
if(!h.b_matches) continue
a_bw[ht[h].oid] = i
a_fw[i] = ht[h].oid++

for i=0 to B.size() // ./′∩: Lineage capture for B
h = hash(B[i].iattrs)
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Figure 20: Inject and Defer plans for set difference. Red operators
are lineage-aware. Dotted arrows are only necessary for lineage
capture.

if(!h) continue
a_bw[ht[h].oid] =i
a_fw[i] = ht[h].oid++

Listing 6: Defer lineage capture for bag intersection A
B⋂

iattrsB.

F.5 Set and bag difference
Smoke implements set difference of two relations A and B

(i.e., A
B/S
\dattrsB) in a hash-based way similar to set intersection.

The only differences are (a) we set the b_bit of each hash
entry to 1 instead of 0 during the initial build and (b) when
we probe the hash table with the inner relation we set the
b_bit to 0 as opposed to 1. The final scan outputs only the
hash entries with b_bit=1 as these are the tuples that appear
in the inner relation but do not appear in the outter relation.

Efficient lineage capture for set difference is non-trivial. By
definition, the lineage for a tuple o ∈ A \ B depends on (a)
the set of tuples in A that it came from and (b) the whole
inner relation B. Capturing forward indexes for the A tuples
follows the lineage capture logic of set intersection and we
omit further details. The problem with set difference is that
each output depends on the whole outer relation B. Our ex-
perimental results show that lineage capture is meaningful
when lineage has small cardinality. As such, if B is a base
relation we do not capture lineage and for backward queries
that require access to B we simply scan B. Now, if the input
relation is an intermediate relation, then Smoke performs
lineage capture during the execution of the operator whose
output is the intermediate relation that is the outer relation to
the set difference. Hence, for a backward query on the set dif-
ference we can access a base relation that is used to construct
the intermediate relation through the backward index of the
intermediate relation. More interestingly, a forward query
from a tuple of a base relation, that is used in the construction
of the intermediate relation that is input to the set difference,
is the whole output times the amount of tuples it contributes
to the intermediate relation. This is because each tuple in
the intermediate relation contributes to all the tuples in the
output of the set difference.

As such, Smoke captures lineage only for the A relation that
follows the logic of lineage capture for the inner relation of
set intersection. For completeness, Figure 20 illustrates the
corresponding Inject and Defer physical plans.

F.6 θ-joins and Nested Loops
So far, we have proposed a physical algebra for hash-based

implementations of equi-joins, group-by aggregations, unions,
intersections, and differences. In this section we give a brief
discussion for Inject lineage capture of nested-loop based

implementations for θ-joins. Lineage capture with merge-
sort approaches and lineage capture based on nested loops
for the rest operators are obvious future work.

Input: A, B
Output: O,

a_fw[A.size()][], b_fw[B.size()][] // forward indexes
a_bw[], b_bw[] // backward indexes

oid=-1
for i = 0 to A.size()
for j = 0 to B.size()
if(θ(A[i], B[j]))
O[++oid] = create_output_record(A[i], B[j])
a_bw[oid] = i
b_bw[oid] = j
a_fw[i].insert(oid)
b_fw[j].insert(oid)

Listing 7: Inject lineage capture for nested loop join A ./θ B.

Inject: Listing 7 illustrates the lineage capture of Smoke for
nested-loop θ-joins. For each combination of tuples from A
and B that satisfy the θ condition the algorithm emits the
record to construct the correct output. Since we write serially
the output, we can also write serially the lineage indexes and
maintain the alignment between each output record and their
corresponding backward lineage index.

As an optimization, note that the backward index for the
A relation can be condensed. All the output records due
to A[i] will be consecutive in the output. Hence, instead of
keeping the rids for each output a_fw[i].insert(oid)
we can simply store the rid of only the first one.

F.7 Cross product
Regarding cross product, Smoke does not perform lineage

capture in the general case. Given an input tuple from the
outer relation A with rid a we know that its forward lineage
is {a,a + |B|, . . . , a + (|A| − 1)|B|} due to the semantics of cross
product. Similar is the series for the inner relation. Hence,
whether we are given an input or output tuple we can directly
infer the backward and lineage rids at runtime without a cost.
If the input to cross product is intermediate relations, Smoke
first captures lineage for operators that produce them.

F.8 Group-By Aggregations and Joins
Finally, we include code snippets for Defer and Inject joins

and group-by aggregations that we presented in Section 3.2.
Listings 8 and 9 illustrate the Inject and Defer approaches
for group-by aggregation, respectively. Listing 10 illustrates
the Inject approach of Smoke for joins, while Listing 11 shows
the Defer approach and highlights its differences from the
the Inject approach.

Input: A
Output: O,

fw[], bw[][] // forward, backward index
Hash Table ht, Hash Function hash
for i = 0 to A.size() // γht Build phase
h = hash(A[i].gbattr)
if(!ht[h]) ht[h]={init_agg_state(), rids=[]}
ht[h].state.update(A[i])
ht[h].rids.insert(i)

fw = int[A.size()]
bw = int[ht.size()][]
oid = -1;
for (state, rids) in ht // γagg Scan phase
O[++oid] = create_output_record(state)
bw[oid] = rids
for rid in rids
fw[rid] = oid



Listing 8: Inject lineage capture for γht and γagg .

Input: A
Output: O,

fw[], bw[][] // forward, backward index
Hash Table ht, Hash Function hash
for i = 0 to A.size() // γht Build phase
h = hash(A[i].gbattr)
if(!ht[h]) ht[h]={init_agg_state(), oid : -1}
ht[h].state.update(A[i])

fw = int[A.size()]
bw = int[ht.size()][]
oid = -1;
for h in ht // γagg Scan phase
O[++oid] = create_output_record(h)
h.oid = oid

for i=0 to A.size()
h = hash(A[i].gbattr)
bw[ht[h].oid].insert(i)
fw[i] = ht[h].oid

Listing 9: Defer lineage capture using Lγ .
Input: relations A, B;
Output: R // A ./A.a=B.b B

a_fw[][], b_fw[][] // Forward indexes
a_bw[], b_bw[] // Backward indexes

Hash Table ht, Hash Function hash
for i = 0 to A.size() // Build Phase
h = hash(A[i].a)
if(!ht[h]) ht[h]={records=[], i_rids=[]}
ht[h].records.insert(A[i])
ht[h].i_rids.insert(i)

o = 0;
for i = 0 to B.size() // Probe Phase
h = hash(B[i].b)
if(!(t = ht.probe(h))) continue;
for j = 0 to t.i_rids.size()

R[o] = (t.records[j], B[i])
a_bw[o] = t.i_rids[j]
b_bw[o] = i
a_fw[j].insert(o)
b_fw[i].insert(o++)

Listing 10: Inject lineage capture code for A ./A.a=B.b B.

... // Build Phase
if(!ht[h])ht[h]={records=[],i_rids=[],o_rids=[]}

...
o = 0;
for i = 0 to B.size() // Probe Phase
h = hash(B[i].b)
if(!(t = ht.probe(h))) continue;
t.o_rids.insert(o)
for j = 0 to t.i_rids.size()

R[o] = (t.records[j], B[i])
b_bw[o] = i
b_fw[i].insert(o++)

a_bw = int[o] // Build indexes for left relation
for h in ht
s = 0
for r in h.i_rids

a_fw[r] = int[h.o_rids.size()])
for o in h.o_rids
a_fw[r].insert(o + s)
a_bw[o+s] = r

s++

Listing 11: Defer lineage capture for A ./A.a=B.b B.

G. MORE EXPERIMENTS
In this section, we include experiments that did not fit in

the main body of the paper due to space limitations.

G.1 Microbenchmarks with Selection
This experiment uses the following base query:

SELECT * FROM zipf WHERE v < ?, where the at-
tribute v∈ [0,100] is drawn from a uniform distribution.
Varying the parameter ? allows us to vary the query
selectivity. Figure 21 reports the lineage capture costs for two
relation sizes (1,5 million), and varying the estimated query
selectivity between 1% and 50%. We evaluate Smoke-I, as
well as Smoke-I-EC, which estimates the query selectivity as
v

100 and, in turn, uses the selectivity estimates to preallocate
the lineage indexes.
Comparison of Smoke techniques for selection. Smoke-I

introduces average overhead of 0.38× and 0.46×, for one and
five million records across the varying selectivities. This is
consistent with our finding that the techniques primarily vary
by a constant per-tuple overhead. When using selectivity
estimates, Smoke-I-EC reduces the average overhead to 0.14×
and 0.15×, for the respective relation sizes. The reason that
Smoke-I-EC fluctuates is that the selectivity estimates may
be slightly incorrect. When estimates overestimate the true
selectivity, it is typically fine, however if they underestimate
then they lead to array resizing overheads.

G.2 Workload-Aware Optimizations
This set of experiments evaluate the effects of instrumenta-

tion pruning and selection pushdown, which are designed to
reduce lineage capture costs.

Pruning input relations. Figure 22 compares the latency of
Q3 and Q10, which read three and four relations, respectively,
under three sets of conditions: no lineage capture, lineage
capture for all input relations (non-optimized Smoke-I), and
Smoke-I-based lineage capture for a single input relation. We
did not evaluate Q1, which is a single relation query, and Q12
shows the same findings. Although pruning input relations
from lineage capture reduces the overall overhead, we find
that the main overhead is due to the left-most tables in the
join plans (Customer for Q3, Nation for Q10). It tends
to be a smaller table, thus the fanout when joined with the
other tables is high, and leads to more rid array reallocations.
Lineitem incurs the lowest overhead because it is the right-
most join relation, and its join is a primary-foreign key join.
Our pk-fk join optimization uses an rid array rather than
an rid index for the forward lineage index, which is much
cheaper to populate.

Selection pushdown. To evaluate the impact of the selection
pushdown optimization, we used Q1 as the base query, and
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Figure 21: Instrumented selection latency with estimated predicate
selectivity (Smoke-I-EC) and without (Smoke-I). We find that it is
better to over estimate, than underestimate and incur resizing costs.
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Figure 23: Lineage capture with selection push-down at varying
selectivities of l_tax < ?. The crossover point between with and
without pushdown is due to the additional cost of predicate evalua-
tion before adding rids to the lineage indexes.

ran the following lineage consuming query:
SELECT * FROM LB(Q1, Lineitem) WHERE l_tax < ?

Figure 23 plots the average and standard deviation base query
latency when assigning ? to 5 distinct l_tax values, along
with the cost of Smoke-I without selection pushdown, and
Lazy. We find that the effectiveness of selection pushdown
depends on the selectivity of the predicate. The overhead is
linear with respect to the predicate selectivity, and there is
a cross-over point with Smoke-I at high selectivities (> 75%),
where the overhead of evaluating the predicate for every input
record outweighs the benefits of building a smaller lineage
index. We expect that increasing the predicate complexity
(e.g., string comparisons, more predicate clauses) will likely
shift the cross-over point towards lower selectivities. These
results suggest the value of cost-based methods to choose
between the two.

H. RELATED WORK
Lineage. Most related to our work are lineage subsys-
tems for databases that model, capture, index, and query
lineage information. In Section 2, we classified the different

subsystems into logical [9, 21, 31, 32, 35, 66, 86] and physi-
cal [43,44,45,46,58,89]. , explained their differences, and dis-
cussed how Smoke avoids their drawbacks. Our experiments
show how Smoke can both provide negligible lineage cap-
ture overhead, fast lineage query execution, and outperform
state-of-the-art alternatives by multiple orders of magnitude.
Physical Database Design. The physical database design
literature has long studied techniques to create redundant
data structures (e.g., indexes and materialized views) and data
layouts to minimize the expected execution cost of a possible
future query workload [3,4,15,25,42,51,59,62,69,73,79,84].
Smoke is the first database engine to consider lineage as a type
of information for physical design decisions (i.e., we showed
how we can build online lineage indexes and push logic of
lineage consuming queries into lineage capture to answer
future queries equivalent to SQL queries). Also, Smoke does
not simply push the physical database design costs into query
execution; we both propose write-efficient data structures to
minimize construction overheads and overlap lineage index
construction costs with query execution logic.
Lineage Applications. A core motivation behind Smoke is to
demonstrate how applications with hand-tuned implemen-
tations can leverage lineage systems to express their logic
declaratively and enjoy out-of-the(-lineage)-box optimiza-
tions. Interactive data visualizations have long materialized
specialized data structures—such as data cubes [8, 49, 57, 85],
indexes [55,71], or precomputed results [13]—offline in order
to insure sub-150ms response times. In our experiments with
crossfiltering we showed how our push-down optimizations
can be used to construct such cubes. Moreover, we showed
lineage-enabled techniques and workload-aware optimiza-
tions that can adequately address the cold-start problem of
interactive visualizations [7] and the “Overview first, zoom
and filter, and details on demand” interaction paradigm (by
either generating indexes or materializing and partitioning
results). Finally, we showed how lineage can express data
profiling primitives, of core use across domains [63, 76, 83],
and outperform hand-written implementations. These results
provide evidence that Smoke does not just provide declarative
features for applications to express their logic but it can actually
optimize applications holistically.
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