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ABSTRACT
We live in the golden age of distributed computing. Pub-
lic cloud platforms now offer virtually unlimited compute
and storage resources on demand. At the same time, the
Software-as-a-Service (SaaS) model brings enterprise-class
systems to users who previously could not afford such sys-
tems due to their cost and complexity. Alas, traditional
data warehousing systems are struggling to fit into this new
environment. For one thing, they have been designed for
fixed resources and are thus unable to leverage the cloud’s
elasticity. For another thing, their dependence on complex
ETL pipelines and physical tuning is at odds with the flex-
ibility and freshness requirements of the cloud’s new types
of semi-structured data and rapidly evolving workloads.

We decided a fundamental redesign was in order. Our
mission was to build an enterprise-ready data warehousing
solution for the cloud. The result is the Snowflake Elastic
Data Warehouse, or “Snowflake” for short. Snowflake is a
multi-tenant, transactional, secure, highly scalable and elas-
tic system with full SQL support and built-in extensions for
semi-structured and schema-less data. The system is offered
as a pay-as-you-go service in the Amazon cloud. Users up-
load their data to the cloud and can immediately manage
and query it using familiar tools and interfaces. Implemen-
tation began in late 2012 and Snowflake has been generally
available since June 2015. Today, Snowflake is used in pro-
duction by a growing number of small and large organiza-
tions alike. The system runs several million queries per day
over multiple petabytes of data.

In this paper, we describe the design of Snowflake and
its novel multi-cluster, shared-data architecture. The paper
highlights some of the key features of Snowflake: extreme
elasticity and availability, semi-structured and schema-less
data, time travel, and end-to-end security. It concludes with
lessons learned and an outlook on ongoing work.

Categories and Subject Descriptors
Information systems [Data management systems]: Data-
base management system engines
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1. INTRODUCTION
The advent of the cloud marks a move away from software

delivery and execution on local servers, and toward shared
data centers and software-as-a-service solutions hosted by
platform providers such as Amazon, Google, or Microsoft.
The shared infrastructure of the cloud promises increased
economies of scale, extreme scalability and availability, and
a pay-as-you-go cost model that adapts to unpredictable us-
age demands. But these advantages can only be captured
if the software itself is able to scale elastically over the pool
of commodity resources that is the cloud. Traditional data
warehousing solutions pre-date the cloud. They were de-
signed to run on small, static clusters of well-behaved ma-
chines, making them a poor architectural fit.

But not only the platform has changed. Data has changed
as well. It used to be the case that most of the data in a
data warehouse came from sources within the organization:
transactional systems, enterprise resource planning (ERP)
applications, customer relationship management (CRM) ap-
plications, and the like. The structure, volume, and rate of
the data were all fairly predictable and well known. But
with the cloud, a significant and rapidly growing share of
data comes from less controllable or external sources: ap-
plication logs, web applications, mobile devices, social me-
dia, sensor data (Internet of Things). In addition to the
growing volume, this data frequently arrives in schema-less,
semi-structured formats [3]. Traditional data warehousing
solutions are struggling with this new data. These solu-
tions depend on deep ETL pipelines and physical tuning
that fundamentally assume predictable, slow-moving, and
easily categorized data from largely internal sources.

In response to these shortcomings, parts of the data ware-
housing community have turned to “Big Data” platforms
such as Hadoop or Spark [8, 11]. While these are indis-
pensable tools for data center-scale processing tasks, and the
open source community continues to make big improvements
such as the Stinger Initiative [48], they still lack much of the
efficiency and feature set of established data warehousing
technology. But most importantly, they require significant
engineering effort to roll out and use [16].

We believe that there is a large class of use cases and
workloads which can benefit from the economics, elasticity,
and service aspects of the cloud, but which are not well
served by either traditional data warehousing technology or

215

http://dx.doi.org/10.1145/2882903.2903741
http://crossmark.crossref.org/dialog/?doi=10.1145%2F2882903.2903741&domain=pdf&date_stamp=2016-06-14


by Big Data platforms. So we decided to build a completely
new data warehousing system specifically for the cloud. The
system is called the Snowflake Elastic Data Warehouse, or
“Snowflake”. In contrast to many other systems in the cloud
data management space, Snowflake is not based on Hadoop,
PostgreSQL or the like. The processing engine and most of
the other parts have been developed from scratch.

The key features of Snowflake are as follows.

Pure Software-as-a-Service (SaaS) Experience Users
need not buy machines, hire database administrators,
or install software. Users either already have their data
in the cloud, or they upload (or mail [14]) it. They can
then immediately manipulate and query their data us-
ing Snowflake’s graphical interface or standardized in-
terfaces such as ODBC. In contrast to other Database-
as-a-Service (DBaaS) offerings, Snowflake’s service as-
pect extends to the whole user experience. There are
no tuning knobs, no physical design, no storage groom-
ing tasks on the part of users.

Relational Snowflake has comprehensive support for ANSI
SQL and ACID transactions. Most users are able to
migrate existing workloads with little to no changes.

Semi-Structured Snowflake offers built-in functions and
SQL extensions for traversing, flattening, and nest-
ing of semi-structured data, with support for popular
formats such as JSON and Avro. Automatic schema
discovery and columnar storage make operations on
schema-less, semi-structured data nearly as fast as over
plain relational data, without any user effort.

Elastic Storage and compute resources can be scaled in-
dependently and seamlessly, without impact on data
availability or performance of concurrent queries.

Highly Available Snowflake tolerates node, cluster, and
even full data center failures. There is no downtime
during software or hardware upgrades.

Durable Snowflake is designed for extreme durability with
extra safeguards against accidental data loss: cloning,
undrop, and cross-region backups.

Cost-efficient Snowflake is highly compute-efficient and all
table data is compressed. Users pay only for what
storage and compute resources they actually use.

Secure All data including temporary files and network traf-
fic is encrypted end-to-end. No user data is ever ex-
posed to the cloud platform. Additionally, role-based
access control gives users the ability to exercise fine-
grained access control on the SQL level.

Snowflake currently runs on the Amazon cloud (Amazon
Web Services, AWS), but we may port it to other cloud
platforms in the future. At the time of writing, Snowflake
executes millions of queries per day over multiple petabytes
of data, serving a rapidly growing number of small and large
organizations from various domains.

Outline.
The paper is structured as follows. Section 2 explains the

key design choice behind Snowflake: separation of storage
and compute. Section 3 presents the resulting multi-cluster,
shared-data architecture. Section 4 highlights differentiat-
ing features: continuous availability, semi-structured and

schema-less data, time travel and cloning, and end-to-end
security. Section 5 discusses related work. Section 6 con-
cludes the paper with lessons learned and an outlook on
ongoing work.

2. STORAGE VERSUS COMPUTE
Shared-nothing architectures have become the dominant

system architecture in high-performance data warehousing,
for two main reasons: scalability and commodity hardware.
In a shared-nothing architecture, every query processor node
has its own local disks. Tables are horizontally partitioned
across nodes and each node is only responsible for the rows
on its local disks. This design scales well for star-schema
queries, because very little bandwidth is required to join a
small (broadcast) dimension table with a large (partitioned)
fact table. And because there is little contention for shared
data structures or hardware resources, there is no need for
expensive, custom hardware [25].

In a pure shared-nothing architecture, every node has the
same responsibilities and runs on the same hardware. This
approach results in elegant software that is easy to reason
about, with all the nice secondary effects. A pure shared-
nothing architecture has an important drawback though:
it tightly couples compute resources and storage resources,
which leads to problems in certain scenarios.

Heterogeneous Workload While the hardware is homo-
geneous, the workload typically is not. A system con-
figuration that is ideal for bulk loading (high I/O band-
width, light compute) is a poor fit for complex queries
(low I/O bandwidth, heavy compute) and vice versa.
Consequently, the hardware configuration needs to be
a trade-off with low average utilization.

Membership Changes If the set of nodes changes; either
as a result of node failures, or because the user chooses
to resize the system; large amounts of data need to be
reshuffled. Since the very same nodes are responsible
for both data shuffling and query processing, a sig-
nificant performance impact can be observed, limiting
elasticity and availability.

Online Upgrade While the effects of small membership
changes can be mitigated to some degree using repli-
cation, software and hardware upgrades eventually af-
fect every node in the system. Implementing online
upgrades such that one node after another is upgraded
without any system downtime is possible in principle,
but is made very hard by the fact that everything is
tightly coupled and expected to be homogeneous.

In an on-premise environment, these issues can usually be
tolerated. The workload may be heterogeneous, but there is
little one can do if there is only a small, fixed pool of nodes
on which to run. Upgrades of nodes are rare, and so are
node failures and system resizing.

The situation is very different in the cloud. Platforms such
as Amazon EC2 feature many different node types [4]. Tak-
ing advantage of them is simply a matter of bringing the data
to the right type of node. At the same time, node failures are
more frequent and performance can vary dramatically, even
among nodes of the same type [45]. Membership changes
are thus not an exception, they are the norm. And finally,
there are strong incentives to enable online upgrades and
elastic scaling. Online upgrades dramatically shorten the
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software development cycle and increase availability. Elas-
tic scaling further increases availability and allows users to
match resource consumption to their momentary needs.

For these reasons and others, Snowflake separates storage
and compute. The two aspects are handled by two loosely
coupled, independently scalable services. Compute is pro-
vided through Snowflake’s (proprietary) shared-nothing en-
gine. Storage is provided through Amazon S3 [5], though in
principle any type of blob store would suffice (Azure Blob
Storage [18, 36], Google Cloud Storage [20]). To reduce net-
work traffic between compute nodes and storage nodes, each
compute node caches some table data on local disk.

An added benefit of this solution is that local disk space is
not spent on replicating the whole base data, which may be
very large and mostly cold (rarely accessed). Instead, local
disk is used exclusively for temporary data and caches, both
of which are hot (suggesting the use of high-performance
storage devices such as SSDs). So, once the caches are
warm, performance approaches or even exceeds that of a
pure shared-nothing system. We call this novel architecture
the multi-cluster, shared-data architecture.

3. ARCHITECTURE
Snowflake is designed to be an enterprise-ready service.

Besides offering high degrees of usability and interoperabil-
ity, enterprise-readiness means high availability. To this
end, Snowflake is a service-oriented architecture composed
of highly fault tolerant and independently scalable services.
These services communicate through RESTful interfaces and
fall into three architectural layers:

Data Storage This layer uses Amazon S3 to store table
data and query results.

Virtual Warehouses The “muscle” of the system. This
layer handles query execution within elastic clusters of
virtual machines, called virtual warehouses.

Cloud Services The “brain” of the system. This layer is a
collection of services that manage virtual warehouses,
queries, transactions, and all the metadata that goes
around that: database schemas, access control infor-
mation, encryption keys, usage statistics and so forth.

Figure 1 illustrates the three architectural layers of Snow-
flake and their principal components.

3.1 Data Storage
Amazon Web Services (AWS) have been chosen as the

initial platform for Snowflake for two main reasons. First,
AWS is the most mature offering in the cloud platform mar-
ket. Second (and related to the first point), AWS offers the
largest pool of potential users.

The next choice was then between using S3 or develop-
ing our own storage service based on HDFS or similar [46].
We spent some time experimenting with S3 and found that
while its performance could vary, its usability, high avail-
ability, and strong durability guarantees were hard to beat.
So rather than developing our own storage service, we in-
stead decided to invest our energy into local caching and
skew resilience techniques in the Virtual Warehouses layer.

Compared to local storage, S3 naturally has a much higher
access latency and there is a higher CPU overhead associated
with every single I/O request, especially if HTTPS connec-
tions are used. But more importantly, S3 is a blob store with
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Figure 1: Multi-Cluster, Shared Data Architecture

a relatively simple HTTP(S)-based PUT/GET/DELETE
interface. Objects i.e. files can only be (over-)written in
full. It is not even possible to append data to the end of a
file. In fact, the exact size of a file needs to be announced
up-front in the PUT request. S3 does, however, support
GET requests for parts (ranges) of a file.

These properties had a strong influence on Snowflake’s
table file format and concurrency control scheme (cf. Sec-
tion 3.3.2). Tables are horizontally partitioned into large,
immutable files which are equivalent to blocks or pages in
a traditional database system. Within each file, the values
of each attribute or column are grouped together and heav-
ily compressed, a well-known scheme called PAX or hybrid
columnar in the literature [2]. Each table file has a header
which, among other metadata, contains the offsets of each
column within the file. Because S3 allows GET requests over
parts of files, queries only need to download the file headers
and those columns they are interested in.

Snowflake uses S3 not only for table data. It also uses
S3 to store temp data generated by query operators (e.g.
massive joins) once local disk space is exhausted, as well as
for large query results. Spilling temp data to S3 allows the
system to compute arbitrarily large queries without out-of-
memory or out-of-disk errors. Storing query results in S3
enables new forms of client interactions and simplifies query
processing, since it removes the need for server-side cursors
found in traditional database systems.

Metadata such as catalog objects, which table consists of
which S3 files, statistics, locks, transaction logs, etc. is stored
in a scalable, transactional key-value store, which is part of
the Cloud Services layer.

3.2 Virtual Warehouses
The Virtual Warehouses layer consists of clusters of EC2

instances. Each such cluster is presented to its single user
through an abstraction called a virtual warehouse (VW).
The individual EC2 instances that make up a VW are called
worker nodes. Users never interact directly with worker
nodes. In fact, users do not know or care which or how
many worker nodes make up a VW. VWs instead come in
abstract “T-Shirt sizes” ranging from X-Small to XX-Large.
This abstraction allows us to evolve the service and pricing
independent of the underlying cloud platform.
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3.2.1 Elasticity and Isolation
VWs are pure compute resources. They can be created,

destroyed, or resized at any point, on demand. Creating or
destroying a VW has no effect on the state of the database.
It is perfectly legal (and encouraged) that users shut down
all their VWs when they have no queries. This elasticity
allows users to dynamically match their compute resources
to usage demands, independent of the data volume.

Each individual query runs on exactly one VW. Worker
nodes are not shared across VWs, resulting in strong perfor-
mance isolation for queries. (That being said, we recognize
worker node sharing as an important area of future work,
because it will enable higher utilization and lower cost for
use cases where performance isolation is not big concern.)

When a new query is submitted, each worker node in
the respective VW (or a subset of the nodes if the op-
timizer detects a small query) spawns a new worker pro-
cess. Each worker process lives only for the duration of its
query1. A worker process by itself—even if part of an up-
date statement—never causes externally visible effects, be-
cause table files are immutable, cf. Section 3.3.2. Worker
failures are thus easily contained and routinely resolved by
retries. Snowflake does not currently perform partial retries
though, so very large, long-running queries are an area of
concern and future work.

Each user may have multiple VWs running at any given
time, and each VW in turn may be running multiple con-
current queries. Every VW has access to the same shared
tables, without the need to physically copy data.

Shared, infinite storage means users can share and inte-
grate all their data, one of the core principles of data ware-
housing. Simultaneously, users benefit from private com-
pute resources, avoiding interference of different workloads
and organizational units—one of the reasons for data marts.
This elasticity and isolation enables some novel use strate-
gies. It is common for Snowflake users to have several VWs
for queries from different organizational units, often running
continuously, and periodically launch on-demand VWs, for
instance for bulk loading.

Another important observation related to elasticity is that
it is often possible to achieve much better performance for
roughly the same price. For example, a data load which
takes 15 hours on a system with 4 nodes might take only
2 hours with 32 nodes2. Since one pays for compute-hours,
the overall cost is very similar—yet the user experience is
dramatically different. We thus believe that VW elasticity
is one of the biggest benefits and differentiators of the Snow-
flake architecture, and it shows that a novel design is needed
to make use of unique capabilities of the cloud.

3.2.2 Local Caching and File Stealing
Each worker node maintains a cache of table data on local

disk. The cache is a collection of table files i.e. S3 objects
that have been accessed in the past by the node. To be
precise, the cache holds file headers and individual columns
of files, since queries download only the columns they need.

The cache lives for the duration of the worker node and is
shared among concurrent and subsequent worker processes

1Ephemeral processes are appropriate for analytic workloads
but entail some query start-up cost. As an obvious optimiza-
tion, we plan to recycle worker processes for small queries.
2Snowflake exposes T-shirt sizes rather than concrete node
numbers, but the principle holds.

i.e. queries. It just sees a stream of file and column requests,
and follows a simple least-recently-used (LRU) replacement
policy, oblivious of individual queries. This simple scheme
works surprisingly well, but we may refine it in the future
to better match different workloads.

To improve the hit rate and avoid redundant caching of
individual table files across worker nodes of a VW, the query
optimizer assigns input file sets to worker nodes using con-
sistent hashing over table file names [31]. Subsequent or
concurrent queries accessing the same table file will there-
fore do this on the same worker node.

Consistent hashing in Snowflake is lazy. When the set
of worker nodes changes—because of node failures or VW
resizing—no data is shuffled immediately. Instead, Snow-
flake relies on the LRU replacement policy to eventually re-
place the cache contents. This solution amortizes the cost
of replacing cache contents over multiple queries, resulting
in much better availability than an eager cache or a pure
shared-nothing system which would need to immediately
shuffle large amounts of table data across nodes. It also
simplifies the system since there is no “degraded” mode.

Besides caching, skew handling is particularly important
in a cloud data warehouse. Some nodes may be executing
much slower than others due to virtualization issues or net-
work contention. Among other places, Snowflake deals with
this problem at the scan level. Whenever a worker process
completes scanning its set of input files, it requests addi-
tional files from its peers, a technique we call file stealing.
If a peer finds that it has many files left in its input file
set when such a request arrives, it answers the request by
transferring ownership of one remaining file for the dura-
tion and scope of the current query. The requestor then
downloads the file directly from S3, not from its peer. This
design ensures that file stealing does not make things worse
by putting additional load on straggler nodes.

3.2.3 Execution Engine
There is little value in being able to execute a query over

1,000 nodes if another system can do it in the same time
using 10 such nodes. So while scalability is prime, per-node
efficiency is just as important. We wanted to give users the
best price/performance of any database-as-a-service offering
on the market, so we decided to implement our own state-
of-the-art SQL execution engine. The engine we have built
is columnar, vectorized, and push-based.

Columnar storage and execution is generally considered
superior to row-wise storage and execution for analytic
workloads, due to more effective use of CPU caches and
SIMD instructions, and more opportunities for (light-
weight) compression [1, 33].

Vectorized execution means that, in contrast to MapRe-
duce for example [42], Snowflake avoids materialization
of intermediate results. Instead, data is processed in
pipelined fashion, in batches of a few thousand rows in
columnar format. This approach, pioneered by Vector-
Wise (originally MonetDB/X100 [15]), saves I/O and
greatly improves cache efficiency.

Push-based execution refers to the fact that relational op-
erators push their results to their downstream oper-
ators, rather than waiting for these operators to pull
data (classic Volcano-style model [27]). Push-based ex-
ecution improves cache efficiency, because it removes
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control flow logic from tight loops [41]. It also enables
Snowflake to efficiently process DAG-shaped plans, as
opposed to just trees, creating additional opportunities
for sharing and pipelining of intermediate results.

At the same time, many sources of overhead in traditional
query processing are not present in Snowflake. Notably,
there is no need for transaction management during execu-
tion. As far as the engine is concerned, queries are executed
against a fixed set of immutable files. Also, there is no buffer
pool. Most queries scan large amounts of data. Using mem-
ory for table buffering versus operation is a bad trade-off
here. Snowflake does, however, allow all major operators
(join, group by, sort) to spill to disk and recurse when main
memory is exhausted. We found that a pure main-memory
engine, while leaner and perhaps faster, is too restrictive
to handle all interesting workloads. Analytic workloads can
feature extremely large joins or aggregations.

3.3 Cloud Services
Virtual warehouses are ephemeral, user-specific resources.

In contrast, the Cloud Services layer is heavily multi-tenant.
Each service of this layer—access control, query optimizer,
transaction manager, and others—is long-lived and shared
across many users. Multi-tenancy improves utilization and
reduces administrative overhead, which allows for better
economies of scale than in traditional architectures where
every user has a completely private system incarnation.

Each service is replicated for high availability and scala-
bility. Consequently, the failure of individual service nodes
does not cause data loss or loss of availability, though some
running queries may fail (and be transparently re-executed).

3.3.1 Query Management and Optimization
All queries issued by users pass through the Cloud Services

layer. Here, all the early stages of the query life cycle are
handled: parsing, object resolution, access control, and plan
optimization.

Snowflake’s query optimizer follows a typical Cascades-
style approach [28], with top-down cost-based optimization.
All statistics used for optimization are automatically main-
tained on data load and updates. Since Snowflake does
not use indices (cf. Section 3.3.3), the plan search space
is smaller than in some other systems. The plan space is
further reduced by postponing many decisions until execu-
tion time, for example the type of data distribution for joins.
This design reduces the number of bad decisions made by
the optimizer, increasing robustness at the cost of a small
loss in peak performance. It also makes the system easier
to use (performance becomes more predictable), which is in
line with Snowflake’s overall focus on service experience.

Once the optimizer completes, the resulting execution plan
is distributed to all the worker nodes that are part of the
query. As the query executes, Cloud Services continuously
tracks the state of the query to collect performance counters
and detect node failures. All query information and statis-
tics are stored for audits and performance analysis. Users
are able to monitor and analyze past and ongoing queries
through the Snowflake graphical user interface.

3.3.2 Concurrency Control
As mentioned previously, concurrency control is handled

entirely by the Cloud Services layer. Snowflake is designed
for analytic workloads, which tend to be dominated by large

reads, bulk or trickle inserts, and bulk updates. Like most
systems in this workload space, we decided to implement
ACID transactions via Snapshot Isolation (SI) [17].

Under SI, all reads by a transaction see a consistent snap-
shot of the database as of the time the transaction started.
As customary, SI is implemented on top of multi-version
concurrency control (MVCC), which means a copy of every
changed database object is preserved for some duration.

MVCC is a natural choice given the fact that table files
are immutable, a direct consequence of using S3 for storage.
Changes to a file can only be made by replacing it with a
different file that includes the changes3. It follows that write
operations (insert, update, delete, merge) on a table produce
a newer version of the table by adding and removing whole
files relative to the prior table version. File additions and
removals are tracked in the metadata (in the global key-value
store), in a form which allows the set of files that belong to
a specific table version to be computed very efficiently.

Besides for SI, Snowflake also uses these snapshots to im-
plement time travel and efficient cloning of database objects,
see Section 4.4 for details.

3.3.3 Pruning
Limiting access only to data that is relevant to a given

query is one of the most important aspects of query pro-
cessing. Historically, data access in databases was limited
through the use of indices, in the form of B+-trees or similar
data structures. While this approach proved highly effec-
tive for transaction processing, it raises multiple problems
for systems like Snowflake. First, it relies heavily on random
access, which is a problem both due to the storage medium
(S3) and the data format (compressed files). Second, main-
taining indices significantly increases the volume of data and
data loading time. Finally, the user needs to explicitly cre-
ate the indices—which would go very much against the pure
service approach of Snowflake. Even with the aid of tuning
advisors, maintaining indices can be a complex, expensive,
and risky process.

An alternative technique has recently gained popularity
for large-scale data processing: min-max based pruning, also
known as small materialized aggregates [38], zone maps [29],
and data skipping [49]. Here, the system maintains the data
distribution information for a given chunk of data (set of
records, file, block etc.), in particular minimum and max-
imum values within the chunk. Depending on the query
predicates, these values can be used to determine that a
given chunk of data might not be needed for a given query.
For example, imagine files f1 and f2 contain values 3..5 and
4..6 respectively, in some column x. Then, if a query has a
predicate WHERE x >= 6, we know that only f2 needs to be
accessed. Unlike traditional indices, this metadata is usually
orders of magnitude smaller than the actual data, resulting
in a small storage overhead and fast access.

Pruning nicely matches the design principles of Snowflake:
it does not rely on user input; it scales well; and it is easy to
maintain. What is more, it works well for sequential access
of large chunks of data, and it adds little overhead to loading,
query optimization, and query execution times.

Snowflake keeps pruning-related metadata for every indi-

3It would certainly be possible to defer changes to table
files through the introduction of a redo-undo log, perhaps in
combination with a delta store [32], but we are currently not
pursuing this idea for reasons of complexity and scalability.
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vidual table file. The metadata not only covers plain rela-
tional columns, but also a selection of auto-detected columns
inside of semi-structured data, see Section 4.3.2. During op-
timization, the metadata is checked against the query predi-
cates to reduce (“prune”) the set of input files for query exe-
cution. The optimizer performs pruning not only for simple
base-value predicates, but also for more complex expressions
such as WEEKDAY(orderdate) IN (6, 7).

Besides this static pruning, Snowflake also performs dy-
namic pruning during execution. For example, as part of
hash join processing, Snowflake collects statistics on the dis-
tribution of join keys in the build-side records. This informa-
tion is then pushed to the probe side and used to filter and
possibly skip entire files on the probe side. This is in addi-
tion to other well-known techniques such as bloom joins [40].

4. FEATURE HIGHLIGHTS
Snowflake offers many features expected from a relational

data warehouse: comprehensive SQL support, ACID trans-
actions, standard interfaces, stability and security, customer
support, and—of course—strong performance and scalabil-
ity. Additionally, it introduces a number of other valuable
features rarely or never-before seen in related systems. This
section presents a few of these features that we consider
technical differentiators.

4.1 Pure Software-as-a-Service Experience
Snowflake supports standard database interfaces (JDBC,

ODBC, Python PEP-0249) and works with various third-
party tools and services such as Tableau, Informatica, or
Looker. However, it also provides the possibility to interact
with the system using nothing but a web browser. A web
UI may seem like a trivial thing, but it quickly proved itself
to be a critical differentiator. The web UI makes it very
easy to access Snowflake from any location and environment,
dramatically reducing the complexity of bootstrapping and
using the system. With a lot of data already in the cloud,
it allowed many users to just point Snowflake at their data
and query away, without downloading any software.

As may be expected, the UI allows not only SQL opera-
tions, but also gives access to the database catalog, user and
system management, monitoring, usage information, and so
forth. We continuously expand the UI functionality, work-
ing on aspects such as online collaboration, user feedback
and support, and others.

But our focus on ease-of-use and service experience does
not stop at the user interface; it extends to every aspect
of the system architecture. There are no failure modes, no
tuning knobs, no physical design, no storage grooming tasks.
It is all about the data and the queries.

4.2 Continuous Availability
In the past, data warehousing solutions were well-hidden

back-end systems, isolated from most of the world. In such
environments, downtimes—both planned (software upgrades
or administrative tasks) and unplanned (failures)—usually
did not have a large impact on operations. But as data
analysis became critical to more and more business tasks,
continuous availability became an important requirement
for any data warehouse. This trend mirrors the expecta-
tions on modern SaaS systems, most of which are always-on,
customer-facing applications with no (planned) downtime.

Snowflake offers continuous availability that meets these
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Figure 2: Multi-Data Center Instance of Snowflake

expectations. The two main technical features in this regard
are fault resilience and online upgrades.

4.2.1 Fault Resilience
Snowflake tolerates individual and correlated node fail-

ures at all levels of the architecture, shown in Figure 2. The
Data Storage layer of Snowflake today is S3, which is repli-
cated across multiple data centers called “availability zones”
or AZs in Amazon terminology. Replication across AZs al-
lows S3 to handle full AZ failures, and to guarantee 99.99%
data availability and 99.999999999% durability. Matching
S3’s architecture, Snowflake’s metadata store is also dis-
tributed and replicated across multiple AZs. If a node fails,
other nodes can pick up the activities without much impact
on end users. The remaining services of the Cloud Services
layer consist of stateless nodes in multiple AZs, with a load
balancer distributing user requests between them. It follows
that a single node failure or even a full AZ failure causes no
system-wide impact, possibly some failed queries for users
currently connected to a failed node. These users will be
redirected to a different node for their next query.

In contrast, Virtual Warehouses (VWs) are not distributed
across AZs. This choice is for performance reasons. High
network throughput is critical for distributed query execu-
tion, and network throughput is significantly higher within
the same AZ. If one of the worker nodes fails during query
execution, the query fails but is transparently re-executed,
either with the node immediately replaced, or with a tem-
porarily reduced number of nodes. To accelerate node re-
placement, Snowflake maintains a small pool of standby
nodes. (These nodes are also used for fast VW provisioning.)

If an entire AZ becomes unavailable though, all queries
running on a given VW of that AZ will fail, and the user
needs to actively re-provision the VW in a different AZ.
With full-AZ failures being truly catastrophic and exceed-
ingly rare events, we today accept this one scenario of partial
system unavailability, but hope to address it in the future.

4.2.2 Online Upgrade
Snowflake provides continuous availability not only when

failures occur, but also during software upgrades. The sys-
tem is designed to allow multiple versions of the various
services to be deployed side-by-side, both Cloud Services
components and virtual warehouses. This is made possi-
ble by the fact that all services are effectively stateless. All
hard state is kept in a transactional key-value store and is ac-
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cessed through a mapping layer which takes care of metadata
versioning and schema evolution. Whenever we change the
metadata schema, we ensure backward compatibility with
the previous version.

To perform a software upgrade, Snowflake first deploys
the new version of the service alongside the previous ver-
sion. User accounts are then progressively switched to the
new version, at every which point all new queries issued
by the respective user are directed to the new version. All
queries that were executing against the previous version are
allowed to run to completion. Once all queries and users
have finished using the previous version, all services of that
version are terminated and decommissioned.

Figure 3 shows a snapshot of an ongoing upgrade process.
There are two versions of Snowflake running side-by-side,
version 1 (light) and version 2 (dark). There are two ver-
sions of a single incarnation of Cloud Services, controlling
two virtual warehouses (VWs), each having two versions.
The load balancer directs incoming calls to the appropriate
version of Cloud Services. The Cloud Services of one version
only talk to VWs of a matching version.

As mentioned previously, both versions of Cloud Services
share the same metadata store. What is more, VWs of dif-
ferent versions are able to share the same worker nodes and
their respective caches. Consequently, there is no need to
repopulate the caches after an upgrade. The entire process
is transparent to the user with no downtime or performance
degradation.

Online upgrade also has had a tremendous effect on our
speed of development, and on how we handle critical bugs
at Snowflake. At the time of writing, we upgrade all services
once per week. That means we release features and improve-
ments on a weekly basis. To ensure the upgrade process goes
smoothly, both upgrade and downgrade are continuously
tested in a special pre-production incarnation of Snowflake.
In those rare cases where we find a critical bug in our pro-
duction incarnation (not necessarily during an upgrade), we
can very quickly downgrade to the previous version, or im-
plement a fix and perform an out-of-schedule upgrade. This
process is not as scary as it may sound, because we continu-
ously test and exercise the upgrade/downgrade mechanism.
It is highly automated and hardened at this point.

4.3 Semi-Structured and Schema-Less Data
Snowflake extends the standard SQL type system with

three types for semi-structured data: VARIANT, ARRAY, and
OBJECT. Values of type VARIANT can store any value of native
SQL type (DATE, VARCHAR etc.), as well as variable-length
ARRAYs of values, and JavaScript-like OBJECTs, maps from
strings to VARIANT values. The latter are also called docu-
ments in the literature, giving rise to the notion of document
stores (MongoDB [39], Couchbase [23]).
ARRAY and OBJECT are just restrictions of type VARIANT.

The internal representation is the same: a self-describing,
compact binary serialization which supports fast key-value
lookup, as well as efficient type tests, comparison, and hash-
ing. VARIANT columns can thus be used as join keys, group-
ing keys, and ordering keys, just like any other column.

The VARIANT type allows Snowflake to be used in an ELT
(Extract-Load-Transform) manner rather than a traditional
ETL (Extract-Transform-Load) manner. There is no need
to specify document schemas or to perform transformations
on the load. Users can load their input data from JSON,
Avro, or XML format directly into a VARIANT column; Snow-
flake handles parsing and type inference (cf. Section 4.3.3).
This approach, aptly called “schema later” in the literature,
allows for schema evolution by decoupling information pro-
ducers from information consumers and any intermediaries.
In contrast, any change in data schemas in a conventional
ETL pipeline requires coordination between multiple depart-
ments in an organization, which can take months to execute.

Another advantage of ELT and Snowflake is that later,
if transformation is desired, it can be performed using the
full power of a parallel SQL database, including operations
such as joins, sorting, aggregation, complex predicates and
so forth, which are typically missing or inefficient in con-
ventional ETL toolchains. On that point, Snowflake also
features procedural user-defined functions (UDFs) with full
JavaScript syntax and integration with the VARIANT data
type. Support for procedural UDFs further increases the
number of ETL tasks that can be pushed into Snowflake.

4.3.1 Post-relational Operations
The most important operation on documents is extrac-

tion of data elements, either by field name (for OBJECTs), or
by offset (for ARRAYs). Snowflake provides extraction oper-
ations in both functional SQL notation and JavaScript-like
path syntax. The internal encoding makes extraction very
efficient. A child element is just a pointer inside the parent
element; no copying is required. Extraction is often followed
by a cast of the resulting VARIANT value to a standard SQL
type. Again, the encoding makes these casts very efficient.

The second common operation is flattening, i.e. pivoting
a nested document into multiple rows. Snowflake uses SQL
lateral views to represent flattening operations. This flat-
tening can be recursive, allowing the complete conversion
of the hierarchical structure of the document into a rela-
tional table amenable to SQL processing. The opposite op-
eration to flattening is aggregation. Snowflake introduces a
few new aggregate and analytic functions such as ARRAY_AGG
and OBJECT_AGG for this purpose.

4.3.2 Columnar Storage and Processing
The use of a serialized (binary) representation for semi-

structured data is a conventional design choice for integrat-
ing semi-structured data into relational databases. The row-
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Figure 4: TPC-H SF100 and SF1000 Performance: Relational vs. Schema-less Row Format

wise representation, unfortunately, makes storage and pro-
cessing of such data less efficient than that of columnar re-
lational data—which is the usual reason for transforming
semi-structured data into plain relational data.

Cloudera Impala [21] (using Parquet [10]) and Google
Dremel [34] have demonstrated that columnar storage of
semi-structured data is possible and beneficial. However,
Impala and Dremel (and its externalization BigQuery [44])
require users to provide complete table schemas for colum-
nar storage. To achieve both the flexibility of a schema-less
serialized representation and the performance of a columnar
relational database, Snowflake introduces a novel automated
approach to type inference and columnar storage.

As mentioned in Section 3.1, Snowflake stores data in
a hybrid columnar format. When storing semi-structured
data, the system automatically performs statistical analysis
of the collection of documents within a single table file, to
perform automatic type inference and to determine which
(typed) paths are frequently common. The corresponding
columns are then removed from the documents and stored
separately, using the same compressed columnar format as
native relational data. For these columns, Snowflake even
computes materialized aggregates for use by pruning (cf.
Section 3.3.3), as with plain relational data.

During a scan, the various columns can be reassembled
into a single column of type VARIANT. Most queries, however,
are only interested in a subset of the columns of the original
document. In those cases, Snowflake pushes projection and
cast expressions down into the scan operator, so that only
the necessary columns are accessed and cast directly into
the target SQL type.

The optimizations described above are performed inde-
pendently for every table file, which allows for efficient stor-
age and extraction even under schema evolution. However,
it does raise challenges with respect to query optimization, in
particular pruning. Suppose a query has a predicate over a
path expression, and we would like to use pruning to restrict
the set of files to be scanned. The path and correspond-
ing column may be present in most files, but only frequent
enough to warrant metadata in some of the files. The con-
servative solution is to simply scan all files for which there
is no suitable metadata. Snowflake improves over this solu-
tion by computing Bloom filters over all paths (not values!)
present in the documents. These Bloom filters are saved
along with the other file metadata, and probed by the query
optimizer during pruning. Table files which do not contain
paths required by a given query can safely be skipped.

4.3.3 Optimistic Conversion
Because some native SQL types, notably date/time val-

ues, are represented as strings in common external formats
such as JSON or XML, these values need to be converted
from strings to their actual type either at write time (during
insert or update) or at read time (during queries). With-
out a typed schema or equivalent hints, these string conver-
sions need to be performed at read time, which, in a read-
dominated workload, is less efficient than doing the conver-
sions once, during the write. Another problem with untyped
data is the lack of suitable metadata for pruning, which is
especially important in case of dates. (Analytical workloads
frequently have range predicates on date columns.)

But applied at write time, automatic conversions may lose
information. For example, a field containing numeric prod-
uct identifiers may actually not be a number but a string
with significant leading zeros. Similarly, what looks like a
date could really be the content of a text message. Snowflake
solves the problem by performing optimistic data conversion,
and preserving both the result of the conversion and the
original string (unless a fully reversible conversion exists),
in separate columns. If a query later requires the original
string, it is easily retrieved or reconstructed. Because un-
used columns are not loaded and accessed, the impact of any
double storage on query performance is minimal.

4.3.4 Performance
To assess the combined effects of columnar storage, opti-

mistic conversion, and pruning over semi-structured data on
query performance, we conducted a set of experiments using
TPC-H-like4 data and queries.

We created two types of database schemas. First, a con-
ventional, relational TPC-H schema. Second, a “schema-
less” database schema, where every table consisted of a sin-
gle column of type VARIANT. We then generated clustered
(sorted) SF100 and SF1000 data sets (100 GB and 1 TB re-
spectively), stored the data sets in plain JSON format (i.e.,
dates became strings), and loaded that data into Snowflake,
using both the relational and schema-less database schemas.
No hints of any kind regarding the fields, types, and cluster-
ing of the schema-less data were given to the system, and no
other tuning was done. We then defined a few views on top
of the schema-less databases, in order to be able to run the

4Experimental results were obtained using a faithful imple-
mentation of TPC-H data generation and queries. Nonethe-
less, the data, queries, and numbers have not been verified
by the TPC and do not constitute official benchmark results.
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exact same set of TPC-H queries against all four databases.
(At the time of writing, Snowflake does not use views for
type inference or other optimizations, so this was purely a
syntactic convenience.)

Finally, we ran all 22 TPC-H queries against the four
databases, using a medium standard warehouse5. Figure
4 shows the results. Numbers were obtained over three runs
with warm caches. Standard errors were insignificant and
thus omitted from the results.

As can be seen, the overhead of schema-less storage and
query processing was around 10% for all but two queries (Q9
and Q17 over SF1000). For these two queries, we determined
the reason for the slow-down to be a sub-optimal join order,
caused by a known bug in distinct value estimation. We
continue to make improvements to metadata collection and
query optimization over semi-structured data.

In summary, the query performance over semi-structured
data with relatively stable and simple schemas (i.e. the
majority of machine-generated data found in practice), is
nearly on par with the performance over conventional rela-
tional data, enjoying all the benefits of columnar storage,
columnar execution, and pruning—without the user effort.

4.4 Time Travel and Cloning
In Section 3.3.2, we discussed how Snowflake implements

Snapshot Isolation (SI) on top of multi-version concurrency
control (MVCC). Write operations (insert, update, delete,
merge) on a table produce a newer version of the table by
adding and removing whole files.

When files are removed by a new version, they are re-
tained for a configurable duration (currently up to 90 days).
File retention allows Snowflake to read earlier versions of
tables very efficiently; that is, to perform time travel on the
database. Users can access this feature from SQL using the
convenient AT or BEFORE syntax. Timestamps can be abso-
lute, relative with respect to current time, or relative with
respect to previous statements (referred to by ID).

SELECT * FROM my_table AT(TIMESTAMP =>
’Mon, 01 May 2015 16:20:00 -0700’::timestamp);

SELECT * FROM my_table AT(OFFSET => -60*5); -- 5 min ago
SELECT * FROM my_table BEFORE(STATEMENT =>

’8e5d0ca9-005e-44e6-b858-a8f5b37c5726’);

One can even access different versions of the same table
in a single query.

SELECT new.key, new.value, old.value FROM my_table new
JOIN my_table AT(OFFSET => -86400) old -- 1 day ago
ON new.key = old.key WHERE new.value <> old.value;

Based on the same underlying metadata, Snowflake intro-
duces the UNDROP keyword to quickly restore tables, schemas,
or whole databases that have been dropped accidentally.

DROP DATABASE important_db; -- whoops!
UNDROP DATABASE important_db;

Snowflake also implements a functionality we call cloning,
expressed through the new keyword CLONE. Cloning a ta-
ble creates a new table with the same definition and con-
tents quickly and without making physical copies of table

5We currently do not disclose pricing and hardware details,
but a medium standard warehouse consists of a very small
number of inexpensive EC2 instances.
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files. The clone operation simply copies the metadata of
the source table. Right after cloning, both tables refer to
the same set of files, but both tables can be modified inde-
pendently thereafter. The clone feature also supports whole
schemas or databases, which allows for very efficient snap-
shots. Snapshots are good practice before a large batch of
updates, or when performing lengthy, exploratory data anal-
ysis. The CLONE keyword can even be combined with AT and
BEFORE, allowing such snapshots to be made after the fact.

CREATE DATABASE recovered_db CLONE important_db BEFORE(
STATEMENT => ’8e5d0ca9-005e-44e6-b858-a8f5b37c5726’);

4.5 Security
Snowflake is designed to protect user data against attacks

on all levels of the architecture, including the cloud plat-
form. To this end, Snowflake implements two-factor authen-
tication, (client-side) encrypted data import and export, se-
cure data transfer and storage, and role-based access control
(RBAC [26]) for database objects. At all times, data is en-
crypted before being sent over the network, and before being
written to local disk or shared storage (S3). Thus, Snowflake
provides full end-to-end data encryption and security.

4.5.1 Key Hierarchy
Snowflake uses strong AES 256-bit encryption with a hi-

erarchical key model rooted in AWS CloudHSM [12]. En-
cryption keys are automatically rotated and re-encrypted
(“rekeyed”) to ensure that keys complete the full NIST 800-
57 cryptographic key-management life cycle [13]. Encryp-
tion and key management are entirely transparent to the
user and require no configuration or management.

The Snowflake key hierarchy, shown in Figure 5, has four
levels: root keys, account keys, table keys, and file keys.
Each layer of (parent) keys encrypts i.e. wraps the layer of
(child) keys below. Each account key corresponds to one
user account, each table key corresponds to one database
table, and each file key corresponds to one table file.

Hierarchical key models are good security practice because
they constrain the amount of data each key protects. Each
layer reduces the scope of keys below it, as indicated by the
boxes in Figure 5. Snowflake’s hierarchical key model en-
sures isolation of user data in its multi-tenant architecture,
because each user account has a separate account key.

4.5.2 Key Life Cycle
Orthogonal to constraining the amount of data each key

protects, Snowflake also constrains the duration of time dur-
ing which a key is usable. Encryption keys go through four
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phases: (1) a pre-operational creation phase, (2) an oper-
ational phase where keys are used to encrypt (originator-
usage period) and decrypt (recipient-usage period), (3) a
post-operational phase where keys are no longer in use, and
(4) a destroyed phase. Phases 1, 3, and 4 are trivial to im-
plement. Phase 2 requires one to limit the originator-usage
and recipient-usage periods. Only when a key no longer en-
crypts any required data, it can be moved on to phases 3
and 4. Snowflake limits the originator-usage period using
key rotation and the recipient-usage period using rekeying.

Key rotation creates new versions of keys at regular in-
tervals (say, one month). After each such interval, a new
version of a key is created and the previous version of the
key is “retired”. The retired version is still usable, but only
to decrypt data. When wrapping new child keys in the key
hierarchy, or when writing to tables, only the latest, active
version of the key is used to encrypt the data.

Rekeying is the process of re-encrypting old data with
new keys. After a specific time interval (say, one year), data
that has been encrypted with a retired key is re-encrypted
with an active key. This rekeying is orthogonal to key ro-
tation. While key rotation ensures that a key is transferred
from its active state (originator usage) to a retired state (re-
cipient usage), rekeying ensures that a key can be transferred
from its retired state to being destroyed.

Figure 6 shows the life cycle of a single table key. Assume
keys are rotated once per month, and data is rekeyed once
per year. Table files 1 and 2 are created in April 2014, using
key 1 version 1 (k1v1). In May 2014, key 1 is rotated to
version 2 (k1v2), and table file 3 is created using k1v2. In
June 2014, key 1 is rotated to version 3 (k1v3), and two more
table files are created. No more inserts or updates are made
to the table after June 2014. In April 2015, k1v1 becomes
one year old and needs to be destroyed. A new key, key 2
version 1 (k2v1), is created, and all files associated with k1v1
are rekeyed using k2v1. In May 2015, the same happens to
k1v2 and table file 3 is rekeyed using k2v2. In June 2015,
table files 4 and 5 are rekeyed using k2v3.

An analogous scheme is implemented between account
keys and table keys, and between the root key and account
keys. Each level of the key hierarchy undergoes key rota-
tion and rekeying, including the root key. Key rotation and

rekeying of account keys and the root key do not require
re-encryption of files. Only the keys of the immediate lower
level need to be re-encrypted.

The relationship between table keys and file keys is dif-
ferent though. File keys are not wrapped by table keys.
Instead, file keys are cryptographically derived from the
combination of table key and (unique) file name. It follows
that whenever a table key changes, all of its related file keys
change, so the affected table files need to be re-encrypted.
The big benefit of key derivation, however, is that it removes
the need to create, manage, and pass around individual file
keys. A system like Snowflake that handles billions of files
would have to handle many gigabytes of file keys otherwise.

We chose this design also because Snowflake’s separation
of storage and compute allows it to perform re-encryption
without impacting user workloads. Rekeying works in the
background, using different worker nodes than queries. Af-
ter files are rekeyed, Snowflake atomically updates the meta-
data of database tables to point to the newly encrypted files.
The old files are deleted once all ongoing queries are finished.

4.5.3 End-to-End Security
Snowflake uses AWS CloudHSM as a tamper-proof, highly

secure way to generate, store, and use the root keys of the
key hierarchy. AWS CloudHSM is a set of hardware secu-
rity modules (HSMs) that are connected to a virtual private
cluster within AWS. The root keys never leave the HSM
devices. All cryptographic operations using root keys are
performed within the HSMs themselves. Thus, lower-level
keys cannot be unwrapped without authorized access to the
HSM devices. The HSMs are also used to generate keys
at the account and table levels, including during key rota-
tion and rekeying. We configured AWS CloudHSM in its
high-availability configuration to minimize the possibility of
service outages.

In addition to data encryption, Snowflake protects user
data in the following ways:

1. Isolation of storage through access policies on S3.

2. Role-based access control within user accounts for fine-
grained access control to database objects.

3. Encrypted data import and export without the cloud
provider (Amazon) ever seeing data in the clear.

4. Two-factor- and federated authentication for secure
access control.

In summary, Snowflake provides a hierarchical key model
rooted in AWS CloudHSM and uses key rotation and rekey-
ing to ensure that encryption keys follow a standardized life
cycle. Key management is entirely transparent to the user
and requires no configuration, management, or downtime.
It is part of a comprehensive security strategy that enables
full end-to-end encryption and security.

5. RELATED WORK
Cloud-based Parallel Database Systems. Amazon

has a number of DBaaS products with Amazon Redshift
being the data warehousing product among these. Having
evolved from the parallel database system ParAccel, Red-
shift was arguably the first real data warehouse system of-
fered as a service [30]. Redshift uses a classic shared-nothing
architecture. Thus, while being scalable, adding or removing
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compute resources requires data redistribution. In contrast,
Snowflake’s multi-cluster, shared data architecture allows
users to instantly scale up, scale down, or even pause com-
pute independently from storage without data movement—
including the ability to integrate data across isolated com-
pute resources. Also, following a pure service principle,
Snowflake requires no physical tuning, data grooming, man-
ual gathering of table statistics, or table vacuuming on the
part of users. Although Redshift can ingest semi-structured
data such as JSON as a VARCHAR, Snowflake has native sup-
port for semi-structured data, including important optimiza-
tions such as columnar storage.

Google’s Cloud Platform offers a fully managed query ser-
vice known as BigQuery [44], which is the public implemen-
tation of Dremel [34]. The BigQuery service lets users run
queries on terabytes of data at impressive speeds, paral-
lelized across thousands of nodes. One of the inspirations
for Snowflake was BigQuery’s support for JSON and nested
data, which we find necessary for a modern analytics plat-
form. But while BigQuery offers a SQL-like language, it
has some fundamental deviations from the ANSI SQL syn-
tax and semantics, making it tricky to use with SQL-based
products. Also, BigQuery tables are append-only and re-
quire schemas. In comparison, Snowflake offers full DML
(insert, update, delete, merge), ACID transactions, and does
not require schema definitions for semi-structured data.

Microsoft SQL Data Warehouse (Azure SQL DW) is a
recent addition to the Azure cloud platform and services
based on SQL Server and its Analytics Platform System
(APS) appliance [35, 37]. Similar to Snowflake, it separates
storage from compute. Computational resources can be
scaled through data warehouse units (DWUs). The degree
of concurrency is capped though. For any data warehouse,
the maximum number of concurrently executing queries is
32 [47]. Snowflake, in contrast, allows fully independent scal-
ing of concurrent workloads via virtual warehouses. Snow-
flake users are also released from the burden of choosing ap-
propriate distribution keys and other administrative tasks.
And while Azure SQL DW does support queries over non-
relational data via PolyBase [24], it does not have built-in
support for semi-structured data comparable to Snowflake’s
VARIANT type and related optimizations.

Document Stores and Big Data. Document stores
such as MongoDB [39], Couchbase Server [23], and Apache
Cassandra [6], have become increasingly popular among ap-
plication developers in recent years, because of the scala-
bility, simplicity, and schema flexibility they offer. How-
ever, one challenge that has resulted from the simple key-
value and CRUD (create, read, update, and delete) API
of these systems is the difficulty to express more complex
queries. In response, we have seen the emergence of sev-
eral SQL-like query languages such as N1QL [22] for Couch-
base or CQL [19] for Apache Cassandra. Additionally, many
“Big Data” engines now support queries over nested data,
for example Apache Hive [9], Apache Spark [11], Apache
Drill [7], Cloudera Impala [21], and Facebook Presto [43].
We believe that this shows a real need for complex analytics
over schema-less and semi-structured data, and our semi-
structured data support is inspired by many of these sys-
tems. Using schema inference, optimistic conversions, and
columnar storage, Snowflake combines the flexibility of these
systems with the storage efficiency and execution speed of a
relational, column-oriented database.

6. LESSONS LEARNED AND OUTLOOK
When Snowflake was founded in 2012, the database world

was fully focused on SQL on Hadoop, with over a dozen
systems appearing within a short time span. At that time,
the decision to work in a completely different direction, to
build a“classic”data warehouse system for the cloud, seemed
a contrarian and risky move. After 3 years of development
we are confident that it was the right one. Hadoop has not
replaced RDBMSs; it has complemented them. People still
want a relational database, but one that is more efficient,
flexible, and better suited for the cloud.

Snowflake has met our hopes of what a system built for
the cloud can provide to both its users and its authors. The
elasticity of the multi-cluster, shared data architecture has
changed how users approach their data processing tasks.
The SaaS model not only has made it easy for users to try
out and adopt the system, but has also dramatically helped
our development and testing. With a single production ver-
sion and online upgrades, we are able to release new fea-
tures, provide improvements, and fix problems much faster
than we would possibly be able to do under a traditional
development model.

While we had hoped that the semi-structured extensions
would prove useful, we were surprised by the speed of adop-
tion. We discovered a very popular model, where organiza-
tions would use Hadoop for two things: for storing JSON,
and for converting it to a format that can be loaded into
an RDBMS. By providing a system that can efficiently store
and process semi-structured data as-is—with a powerful SQL
interface on top—we found Snowflake replacing not only tra-
ditional database systems, but also Hadoop clusters.

It was not a painless journey of course. While our team
has over 100 years of database-development expertise com-
bined, we did make avoidable mistakes along the way, in-
cluding overly simplistic early implementations of some rela-
tional operators, not incorporating all datatypes early on in
the engine, not early-enough focus on resource management,
postponing work on comprehensive date and time function-
ality etc. Also, our continuous focus on avoiding tuning
knobs raised a series of engineering challenges, ultimately
bringing about many exciting technical solutions. As a re-
sult, today, Snowflake has only one tuning parameter: how
much performance the user wants (and is willing to pay for).

While Snowflake’s performance is already very competi-
tive, especially considering the no-tuning aspect, we know
of many optimizations that we have not had the time for yet.
Somewhat unexpected though, core performance turned out
to be almost never an issue for our users. The reason is that
elastic compute via virtual warehouses can offer the perfor-
mance boost occasionally needed. That made us focus our
development efforts on other aspects of the system.

The biggest technical challenges we face are related to the
SaaS and multi-tenancy aspects of the system. Building a
metadata layer that can support hundreds of users concur-
rently was a very challenging and complex task. Handling
various types of node failures, network failures, and support-
ing services is a never-ending fight. Security has been and
will continue to be a big topic: protecting the system and
the users’ data from external attacks, the users themselves,
and our internal users as well. Maintaining a live system of
hundreds of nodes running millions of queries per day, while
bringing a lot of satisfaction, requires a highly integrated
approach to development, operations, and support.
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Snowflake users continue to throw increasingly bigger and
more complex problems at the system, influencing its evolu-
tion. We are currently working on improving the data access
performance by providing additional metadata structures
and data re-organization tasks—with a focus on minimal to
no user interaction. We continue to improve and extend core
query processing functionality, both for standard SQL and
semi-relational extensions. We plan to further improve the
skew handling and load balancing strategies, whose impor-
tance increases along with the scale of our users’ workloads.
We work on solutions simplifying workload management to
the users, making the system even more elastic. And we
work on integration with external systems, including issues
such as high-frequency data loading.

The biggest future challenge for Snowflake is the transi-
tion to a full self-service model, where users can sign up
and interact with the system without our involvement at
any phase. It will bring a lot of security, performance, and
support challenges. We are looking forward to them.
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