
A Holistic Approach forQuery Evaluation and
Result Vocalization in Voice-Based OLAP

Immanuel Trummer, Yicheng Wang, Saketh Mahankali

Cornell University, Ithaca (NY)

{itrummer,yw876,sm2684}@cornell.edu

ABSTRACT
We focus on the problem of answering OLAP queries via

voice output. We present a holistic approach that combines

query processing and result vocalization.

We use the following key ideas to minimize processing

overheads and maximize answer quality. First, our approach

samples from the database to evaluate alternative speech

fragments. OLAP queries are not fully evaluated. Instead,

sampling focuses on result aspects that are relevant for voice

output. To guide sampling, we rely on methods from the area

of Monte-Carlo Tree Search. Second, we use pipelining to

interleave query processing and voice output. The system

starts providing the user with high-level insights while gener-

ating more fine-grained results in the background. Third, we

optimize speech output to maximize the user’s information

gain under speaking time constraints. We use a maximum-

entropymodel to predict the user’s belief about OLAP results,

after listening to voice output. Based on that model, we se-

lect the most informative speech fragments (i.e., the ones

minimizing the distance between user belief and actual data).

We analyze formal properties of the proposed speech struc-

ture and analyze complexity of our algorithm. Also, we com-

pare alternative vocalization approaches in an extensive user

study.

ACM Reference Format:
Immanuel Trummer, Yicheng Wang, Saketh Mahankali. 2019. A

Holistic Approach for Query Evaluation and Result Vocalization in

Voice-Based OLAP. In 2019 International Conference on Management
of Data (SIGMOD ’19), June 30-July 5, 2019, Amsterdam, Netherlands.
ACM,NewYork, NY, USA, 18 pages. https://doi.org/10.1145/3299869.

3300089

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-5643-5/19/06. . . $15.00

https://doi.org/10.1145/3299869.3300089

1 INTRODUCTION
How to analyze data if you are blind? Almost all prior work

on OLAP focuses on visual interfaces. Our goal is to answer

OLAP-style queries via voice output instead.

Example 1.1. The system presented in this paper allows

for instance the following interaction. Assume we obtain

the voice input “How does the flight cancellation probability
in New York depend on flight date and start airport?” from

the user. As our focus is on voice output generation, our

system uses a simple, keyword-based method to translate

voice input into an OLAP query such as SELECT avg(cp)
FROM table WHERE airportState=’New York’ GROUP BY
flightSeason, airportCity. Next, it uses data sampling, user

modeling, and optimal voice output planning, to select a

concise description of the query result. It might generate the

output “Considering flights from airports in New York and on
any date. Results are broken down by flight season and airport
city. One percent is the average cancellation probability. Values
increase by 20% for flights in Winter. Values increase by 5% for
flights starting from New York City.”.

Our problem setting is not only motivated by the needs of

specific user groups. In general, the communication between

user and computer is more and more shifting towards speech

interfaces. Devices such as Google Home or Amazon Echo

are designed primarily for voice interaction. Voice interfaces

are more convenient if users are distracted or unable to ac-

cess screen and keyboard (e.g., imagine the example of a

surgeon who needs to access patient data while performing

a procedure [17]). Those factors have recently led to sev-

eral publications on voice-based query interfaces [2, 17] and

efficient result output (“vocalization” [24, 25]).

To the best of our knowledge, we present the first sys-

tem for voice-based OLAP. Our research focus lies on the

generation of concise voice answers (our system also fea-

tures a simple voice input interface). Voice output needs

to be extremely concise and simple [24, 25]. In contrast to

written text, users cannot easily re-read difficult passages

or skim text to quickly discard irrelevant parts. Hence, we

treat vocalization as an optimization problem. Our goal is

to transmit the maximal amount of information under con-

straints on speaking time and speech complexity. In contrast

Research 9: Query Processing & Optimization 2 SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

936

https://doi.org/10.1145/3299869.3300089
https://doi.org/10.1145/3299869.3300089
https://doi.org/10.1145/3299869.3300089
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3299869.3300089&domain=pdf&date_stamp=2019-06-25

to prior work, we target results of OLAP queries in partic-

ular [24, 25]. We will demonstrate in our experiments that

prior vocalization methods are unsuitable in this scenario.

In Section 3, we develop a specialized grammar for describ-

ing OLAP results. We show that our grammar has several

properties that are desirable from the user perspective (i.e.,

informative and simple speeches) and system perspective

(i.e., we can efficiently generate corresponding speeches).

Our ultimate goal is to teach listeners about OLAP results.

To judge the quality of a candidate speech, we must reason

about how it influences the user’s belief about data. This is

challenging as voice output must be inherently imprecise

due to conciseness constraint. We perform a pilot user study

to learn how users fill in missing information. Based on study

results, we develop a probabilistic model capturing user ex-

pectations after listening to a given speech. Our goal is to

bring the user’s expectations as close as possible to the true

query result.

In Section 4, we show how to generate near-optimal voice

answers under real time constraints. Our approach com-

bines query evaluation and result vocalization. We demon-

strate in our experiments that such a holistic approach has

tremendous performance benefits. Evaluating OLAP queries

on large data sets can be expensive. Also, our search space

for voice output is quite large and evaluating the quality of a

given speech (by applying our user model) is expensive. We

exploit the following main ideas to generate voice answers

with almost imperceptible delays (i.e., well below the thresh-

old of 500 milliseconds that makes interactive data analysis

convenient [16, 19, 23]).

Sampling. Due to conciseness constraints, we consider a

space of relatively coarse-grained voice descriptions. Trans-

mitting precise OLAP results is typically impossible under

those constraints. Hence, instead of evaluating queries en-

tirely, we evaluate them on small data samples. We use those

samples in order to estimate the quality of speech fragments.

Also, we do not fully instantiate our user model for each

evaluated speech. Instead, we only instantiate our model for

randomly selected aspects of an OLAP result.

Prioritization. Our algorithm is iterative and chooses in

each iteration a speech whose quality estimate are refined

via sampling. Our search space is large. We cannot obtain

precise quality estimates for all speech candidate. We use an

approach based on Monte-Carlo Tree Search (MCTS) [14] to

prioritize samples. This approach balances near-optimally

between exploration (i.e., refining estimates for speeches

about which little is known) and exploitation (i.e., refining

estimates for promising speeches).

Pipelining. Voice output is transmitted sequentially (as

opposed to visual output). We exploit that property and in-

terleave query processing and voice output planning with

readout. While the current sentence is spoken, we determine

the best follow-up in the background. This gives us the free-

dom to start voice output with high-level insights that can

be quickly generated. While voice output is playing, we can

generate more specific follow-ups in the background.

We evaluate our algorithm in comparison to baselines. We

measure raw processing time as well as user preferences

in multiple user studies. In those studies, we asked crowd

workers to analyze several data sets via an online interface

for voice-based OLAP. We summarize our original scientific

contributions:

• We introduce the problem of OLAP vocalization. We

present a speech grammar and an associated user be-

havior model.

• We describe an approach for interleaved query evalua-

tion and result vocalization. This approach uses sam-

pling and pipelining and is tailored to the particulari-

ties of our scenario.

• We evaluate this approach experimentally in several

user studies. We demonstrate favorable performance

compared to baselines in terms of processing times

and user preferences.

The remainder of this paper is organized as follows. We

formalize our problem model in Section 2. We introduce

our speech model in Section 3 and our query evaluation

and vocalization approach in Section 4. Next, we present

our experimental results in Section 5 and compare against

related work in Section 6. The appendix contains additional

experimental and theoretical results.

2 PROBLEM SCENARIO
We evaluate OLAP-style aggregation queries via sampling

and describe their result via voice output. A query q is char-

acterized by an aggregation function, q. f ct , an aggregation
column, q.col , and a set of aggregates, q.aддs . Motivated by

our query evaluation approach based on sampling, we sup-

port three common aggregation functions: average, sum,

and count. Functions such as minima and maxima are noto-

riously difficult to approximate via sampling [20]. We focus

on queries with a single aggregation function, applied to a

single column. Our approach could be easily extended to

support multiple functions and columns. However, allowing

more complex queries seems irrelevant as voice output needs

to be kept simple.

An aggregate in the query result is characterized by a filter

condition on the input data. Different aggregates for the same

query are associated with mutually exclusive conditions (i.e.,

each row in the data set is relevant for at most one aggregate

per query). We also say a tuple is within scope for a specific
aggregate if it satisfies the associated condition. The query
scope consists of rows that are within the scope of any of its

aggregates. Via query evaluation, an aggregate is associated

Research 9: Query Processing & Optimization 2 SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

937

with an aggregate value (which results from applying the

aggregation function to all rows in its scope). An exact OLAP

query result maps each aggregate to its accurate value.

Our model is slightly unusual in that we model query

aggregates explicitly. Typically, aggregates are modeled as

Cartesian product between admissible values in different

dimensions. We choose this representation as it simplifies

our pseudo-code in certain cases. Our actual implementation

represents query aggregates however more efficiently.

Our definition leaves open the source of rows that are

considered for aggregation. We only assume that rows can

be produced without significant startup overheads and at

a sufficiently high frequency. This is for instance the case

if scanning a single source table or when joining fact table

entries with indexed dimension tables.

We assume that aggregates are associated with conditions

of the following structure. A condition corresponds to a

conjunction of several atomic conditions. Each atomic con-

ditions restricts values in one column to a subset of its value

domain. We call the columns on which restrictions can be

placed dimensions. We assume that their value domain is

structured into a (dimension) hierarchy. Each hierarchy has

one or multiple levels that allow to place restrictions at dif-

ferent granularities.

Example 2.1. Assume a relational table storing employees

with their mid-career (columnM) and start salary (S) as well
as their college (C) containing information on employees. We

consider start salary and college as dimension columns. We

structure their value domain hierarchically, e.g. by grouping

colleges first by city, then by state, and finally by US region.

For the start salary, we can group values by rough salary

category (e.g., 60 K or 90 K) or even by larger salary ranges

(e.g., less than 75 K versus more than 75 K). Query q with

q. f ct = AVG, q.col = M , q.aддs = {C = Northeast ∧ S =
60K ,C = Northeast∧S = 80K ,C = Midwest∧S = 60K , . . .}
retrieves mid-career salary averages for the Northeast and

Midwest regions for salaries from 60 to 80 K, grouped by

region and 10 K salary granularity.

We address the (optimization) problem of vocalizing OLAP
query results. A problem instance is characterized by a query

on a specific database. An optimal problem solution is a

speech, describing the query result as good as possible under

all applicable constraints. Following prior work [24], we

consider (threshold) constraints on speech length (measured

as the number of characters) and number of speech fragments

(i.e., sentences). We will define the search space for OLAP

vocalization in Section 3 (as part of our original scientific

contribution). Based on user studies, we also associate each

speech with a probability distribution modeling users’ beliefs

about the query result (after hearing the speech). Intuitively,

our optimization goal is to find a speech that brings the user’s

belief as close as possible to the actual query result. More

precisely, we judge speech quality as defined next.

Definition 2.2. Denote by B(a, t) the user’s belief about an
aggregate a in the result to query q after listening to speech

text t , i.e. B(a, t) is a probability distribution that assigns

a probability to values for a. The Speech Quality q of t is
defined as

∑
a∈q .aдд Pr(a(D)|B(a, t))/|q.aдд | where a(D) is

the actual query result (or, for continuous distributions, a

value range including the actual value).

Intuitively, speech quality is the average probability that

users assign to actual query result values, after listing to

the speech. We will show later that this metric correlates

with the performance of users in estimating query result

values after listening to speech output. Finally, we formally

introduce the problem that we are targeting.

Definition 2.3. The problem of Optimal OLAP Vocaliza-
tion is characterized by a query (whose result is unknown)

and a search space T of speech candidates (subject to con-

straints on speech length). Denote by quality(t) the quality
metric introduced before. The goal in optimal OLAP vocaliza-

tion is to find a speech t ∈ T such that ∀t ∈ T : quality(t) ≥
quality (̃t).

Note that our problem definition does not assume that

a query result is initially available. This motivates the in-

terleaved approach for query evaluation and vocalization

presented in Section 4.

3 SPEECH DESIGN
Our goal is to define a grammar for voice descriptions of

OLAP query results and an associated semantics. In Sec-

tion 3.1, we discuss several desirable properties for such a

grammar. Those properties integrate the user perspective

(i.e., what makes a speech understandable to listeners) as well

as the system perspective (i.e., what properties make speech

generation easier). In Section 3.2, we present a grammar that

has those properties. In order to compare vocalization can-

didates, we need to model how speech fragments influence

the listener’s belief about data. This is challenging as concise

voice output leaves many details open, requiring us to reason

about how users fill in information gaps. We present a user

study on this issue in Section 3.3. Based on the results, we

associate our speech grammar with semantics in terms of

user beliefs (Section 3.4).

3.1 Design Considerations
In the following, we define, loosely, several properties of

speech grammars. We also justify why those properties are

desirable for vocalization.

Conciseness. Voice output needs to be very concise due

to short-term memory constraints of the listeners [24, 25].

Research 9: Query Processing & Optimization 2 SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

938

Table 1: Symbols used in speech grammar.

Symbol Semantics

<Pr> Preamble: summarizes input query

<P> Predicate: characterizes data subset

<L> Name of query dimension level

 Baseline: introduces default result value

<V> Value for aggregation function

<A> Name of query aggregate

<R> Refinement: describes a data subset

<C> Change: how values differ from default

<Q> Quantifier of change

<Dc> Dimension context: embeds member name

<M> Member in dimension hierarchy

OLAP query results may contain too many aggregates to

describe each one via voice output (we show that this case is

common in Section 5). Hence, a speech grammar for OLAP

must include means of abstraction that summarize many

aggregates.

Precision.When vocalizing small results (or being con-

figured with particularly relaxed speaking time constraints),

a system for voice-based OLAP should be able to benefit. In

such cases, the grammar should allow us to generate precise

descriptions. While means of abstraction are important for

conciseness, we need speech fragments that can transmit

fine-grained result details as well.

Extensibility. Voice output, as opposed to visual output,

is generated sequentially. This creates, as we show later, op-

portunities to overlap processing time and speech output.

To leverage those opportunities, we need a speech structure

that allows refinements. More precisely, the speech struc-

ture should enable us to refine prior coarse-grained claims

without creating contradictions.

Simplicity. The speech grammar spans the search space

for result vocalization. The overhead of planning methods

often grows in the search space size. Vocalization is subject

to tight time constraints, motivated by the requirements

of interactive data analysis. Hence, it is desirable to keep

the search space (and thereby search overheads) as small as

possible under the aforementioned constraints.

3.2 Speech Syntax
We propose a speech grammar and justify why it satisfies,

to a large extent, the properties introduced before. Figure 1

shows the syntax of the proposed grammar in EBNF form,

Table 1 describes the grammar symbols. We start each speech

<Speech>::=<Pr><R>*
<Pr>::=Considering (<P>|(<P>)+ and <P>).
[Results are broken down by (<L>|<L>+ and <L>).]

::=<V> is the <A>.
<R>::=Values <C> for (<P>|(<P>)+ and <P>).
<C>::=(increase|decrease) by <Q>
<P>::=<Dc> <M>

Figure 1: Speech syntax represented in EBNF.

with a preamble, providing context for the following result.

We observed that this feature helps users to keep track of

their position in the dimension hierarchies. Next, we set a

baseline that all the following statements relate to. More

precisely, we provide an aggregate value that is typical for

the result to vocalize. The baseline is followed by arbitrarily

many refinement statements. While the baseline is maxi-

mally coarse-grained (as it applies to the query result as a

whole), refinements only refer to subsets. Each refinement

is characterized by predicates and a change descriptor. Pred-

icates define the scope of the refinement by fixing attributes

to specific values. The change descriptor describes a relative

change in expected aggregate value. This change is relative

either to the baseline value or to the last refinement whose

scope subsumes the current one. Next, we show an example

speech, derived using the grammar in Figure 1.

Example 3.1. The following speech answers a query for

average mid-career salary in the entire data set, broken

down by graduation region and rough start salary (e..g, SE-
LECT avg(midCs) FROM T GROUP BY colReg, roughStS).
We mark up speech elements via brackets with the corre-

sponding grammar symbol as subscript: “{Considering {{grad-
uates from}Dc {any college}M }P and {{a start salary of}Dc {any
amount}M }P . Results are broken down by {region}L and {rough
start salary}L .}Pr {{90 K}V is the {averagemid-career salary}A.}B
{Values {increase by {5 percent}Q }C for {{graduates from}Dc {the
North East}M }P .}R {Values {increase by {20 percent}Q }C for {{a
start salary of}Dc {at least 50 K}M }P .}R” This speech could

have been generated by the system we evaluate in Section 5

(assuming that the system has been configuredwith appropri-

ate dimension names, level names, and member names). The

speech refers for instance to members (e.g., “the North East”

or the dimension tree root “any college”) and dimension tree

level names (“region”) in the college location dimension, us-

ing a dimension-specific context template (“graduates from”)

to embed member values. Note that our example query as-

sumes a denormalized database while our system can handle

queries on star schemata as well.

This speech grammar allows to choose the level of ab-

straction flexibly (by choosing the number of predicates in

Research 9: Query Processing & Optimization 2 SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

939

refinement statements). It therefore supports concise high-

level descriptions as well as fine-grained descriptions down

to the level of single aggregates. Also, we can extend a speech

as more fine-grained information becomes available: we can

make coarse-grained statements about larger data subsets

without knowing which fine-grained statements follow. Note

that this property also derives from the fact that we use rela-
tive instead of absolute refinements. The following example

illustrates the difference.

Example 3.2. We use the same query as in Example 3.1.

Assume the sentence “90 K is the average mid-career salary”
is followed by an absolute refinement of the form “95 K is the
average for graduates from the North East”. This prevents us
frommaking further statements about data subsets including

graduates from the North East, without creating contradic-

tions. The relative refinements used in the previous example

allow us to add claims about start salary as new informa-

tion becomes available (even though entries for specific start

salary ranges may include entries for the North East region).

Apart from the previously discussed properties, the gram-

mar has few elements. This is desirable in order to make

planning more efficient.

3.3 User Model
To choose the best speech, we need to predict how users

react to hearing a given speech candidate. More precisely,

we need to reason about the beliefs that a speech induces

about the query result. This becomes challenging due to the

constraints of voice output. Voice output needs to be very

concise. Hence, voice output is typically coarse-grained and

leaves many details open. We must predict how users will

intuitively fill in the gaps.

Example 3.3. Consider the speech “Around 1% is the aver-
age flight cancellation probability in summer. Values increase
by 1% in June.” What is the cancellation probability in July

and August? As shown in the following experiments, most

users intuitively assume a probability of slightly below one

percent for bothmonths (thereby assuming themost uniform

distribution consistent with the description).

Our goal is to map a speech to a probability distribution

over query results. This distribution represents the beliefs

of an average user about the query result after listening

to the speech. To map speeches to beliefs, we must make

assumptions about the behavior of average users. We per-

formed a user study to verify several hypotheses on user

behavior. Those hypotheses derive from assumptions made

in prior work on OLAP (e.g., the maximum entropy principle

(MEP) [6, 18, 22]) or from common sense. More precisely, we

verify the following hypotheses on user behavior:

Table 2: Summarized results of pilot user study on im-
plicit assumptions.

Model Aspect #Consistent An-
swers

#Inconsistent
Answers

Symmetry 15 5

Concentration 28 12

Composition 21 19

Uniformity 15 5

Normal(σ ≤ µ) 74 6

Symmetry. Given an average, users assume that devia-

tions into both directions (i.e, larger and smaller values with

a given distance to the average) are equally likely.

Concentration (unimodality). Given an average value,

users assume that smaller deviations are more likely than

larger deviations.

Composition. Given two refinements with overlapping

scopes, users will be able to integrate their accumulated

effect into their mental model.

Uniformity (MEP). Users tend to assume the most uni-

form result (where uniformity can be measured via the en-

tropy) that is consistent with speech output.

In addition, we show that the value distribution that users

intuitively assume can be approximated via a normal distri-

bution. We try normal distributions with different standard

deviation values for a given mean.

We recruited 20 crowd workers on the AMT platform for

a pilot user study. We formulated a series of questions that

test each of the aforementioned hypotheses. Table 2 summa-

rizes the results.We report for each hypothesis the number of

crowd answers supporting the hypothesis as well as the num-

ber of deviating answers. The precise questions and more

details can be found in the appendix in Table 10. Overall, the

majority of answers is in support of our hypotheses in each

case (note further that only one out of three answer options

is consistent for all aspects except normal distribution vari-

ance). We therefore base our speech semantics, modeling

user beliefs, on those hypotheses.

3.4 Speech Semantics
We formally define the semantics of a speech from the user

perspective. We model that semantics as a probability distri-

bution over possible query results. It represents the user’s

expectations about the query result.

Voice output has to be concise. This makes it often neces-

sary to use generalizing claims that apply to groups of aggre-

gates. Our results from the last subsection demonstrate that

Research 9: Query Processing & Optimization 2 SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

940

users tend to translate such claims into probability distribu-

tions. More precisely, in the absence of further information,

users tend to imagine a distribution that is symmetric and

unimodal. Further, they tend to imagine a distribution that is

quite close to a normal distribution with a standard deviation

proportional to the mean. We do not claim that this distri-

bution is the only one consistent with our observations. As

the normal distribution is well studied and efficiently com-

putable, we use it as base for our user model. More formally,

we define the semantics B of a speech text t as a function
that maps query aggregates a to normal distributions with

scenario-specific variance σ 1
:

B(a, t) = N(M(a, t),σ)

We designate by M the mean of the normal distribu-

tion that is assigned by speech to an aggregate. We define

M(a, t) recursively as follows. Assume first that t is of type
<Baseline> and let v be its aggregate value. Then we set

M(a, t) = v for all aggregates a. Here, we exploit our find-
ings from before that users tend to assume more uniform

value distributions. This is a common assumption in the area

of OLAP in general [22].

Now, assume that t is the concatenation of a prefix x and

a single refinement r (i.e., t = x ◦ r). Further assume that

the refinement r describes an additive change of ∆. Refine-
ments refer to a subset of aggregates that are defined via

predicates. Clearly, we setM(a, t) = M(a,x) + ∆ if a falls

within the scope of r . Here, we exploit our findings on how

users compose effects of multiple refinements.

Refinements should also change user’s belief with regards

to aggregates that do not fall into their scope. This is due

to the baseline in particular, the only absolute statement in

a speech. The baseline claim sets the average over all ag-

gregates. If a refinement increases expected values for some

of the aggregates, it must at the same time lower expected

values for the others to remain consistent with the baseline

claim. Hence, if refinement r applies to m out of n result

aggregates, we must setM(a, t) =M(a, t) −m · ∆/(n −m)
for each aggregate a outside of r ’s scope.

Example 3.4. Consider the following speech with text

t : “The average salary is 80 K. Values increase by 50% for
graduates from the Northeast.” Assume that query results

are broken down by region (Northeast, Midwest, West, and

South). Hence, we have four aggregates in the result. It is

B(Northeast , t) = N(120, 000,σ) (since adding 50% to 80,000

yields 120,000). We choose σ = 40, 000 (half the average of

1
We model sigma as a constant that is approximately proportional to 50%

of the mean when aggregating over the entire data set. While one could

adapt σ dynamically to the mean in the current query, we believe that

our approach represents a good tradeoff between model complexity and

accuracy.

the entire data set). For all other aggregates, e.g. the Midwest,

we set B(Midwest , t) = N(66, 667,σ). This assures that av-
eraging over all four aggregates yields a result consistent

with the first speech sentence.

Note that we can generate user beliefs easily for specific

aggregates (as opposed to having to calculate belief distribu-

tions for each aggregate). This property is important for the

design of our algorithm, presented in the next section.

We analyze the formal properties of our speech semantics

in more detail in Appendix A.

4 QUERY EVALUATION AND
VOCALIZATION

We describe how to evaluate queries and to vocalize query

results in a unified approach. Our goal is to support interac-

tive analysis, implying tight time constraints (less than 500

ms before voice output starts [16, 19, 23]). This is challenging

due to the following factors. First, processing OLAP queries

on large data sets may easily exceed those time limits. Sec-

ond, despite a relatively simple speech structure, we consider

a search space of elevated size. Also, evaluating the quality

of a single speech can be expensive, too. To fully evaluate

speech quality, we must compare the belief it implies on each

aggregate to the real value. The number of aggregates in the

query result may however be large (it grows exponentially

in the number of dimensions the query refers to).

Our algorithm is based on the three main ideas summa-

rized in Section 1. In Section 4.1, we describe a high-level

algorithm implementing those ideas. The next subsections

describe sub-functions used by that algorithm in more detail

and some extensions. We also analyze the complexity of this

algorithm in Appendix A.

4.1 Main Function
Algorithm 1 is the main procedure of our algorithm for com-

bined query evaluation and result vocalization. It obtains

as input a query and a description of user preferences. User

preferences restrict speech length (measured in characters)

as well as the number of speech fragments (i.e., the number

of refinements). The procedure generates voice output, sen-

tence by sentence, while processing data in the background.

The algorithm uses several auxiliary functions. We group

those functions into three categories: speech generation,

voice output, and search tree operations. By convention, we

use the first two letters of each function name to hint at the

associated group. Table 3 summarizes the auxiliary functions

discussed in this and the following sub-sections.

Research 9: Query Processing & Optimization 2 SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

941

(Root)

The average mid-career

salary is 70 K.

The average mid-career

salary is 80 K.

The average mid-career

salary is 90 K.

Values increase by 5% for

graduates from the Northeast.

Values increase by 10% for

graduates from the Northeast.

Values increase by 5% for

graduates from the Midwest.

Further, values increase by 5%

for start salaries of at least 50 K.

Further, values increase by 10%

for start salaries of less than 50 K.

Further, values increase by 5%

for start salaries of at least 60 K.

Figure 2: Example for (part of) speech search tree.

1: // Partially evaluate query q via sampling to generate

2: // near-optimal speech describing query result while

3: // respecting user preference p.
4: procedure EvalVocal(q,p)
5: // Start voice output of preamble

6: t ←SG.preamble(q)
7: VO.start(t)
8: // Initialize search tree for speech output

9: root ←ST.newNode(−, t)
10: ST.expand(q,p)
11: // Iterate until result speech finished

12: f inished ← false
13: while ¬f inished do
14: // Iterate until current voice output finishes

15: while VO.isPlaying do
16: ST.sample(q, root)
17: end while
18: // Is the speech finished?

19: if root .isLea f then
20: f inished ← true
21: else
22: // Choose next sentence

23: root ← argmaxc ∈root .children
c .reward/c .visits

24: // Start playing next sentence

25: VO.start(root .lastSentence)
26: end if
27: end while
28: end procedure

Algorithm1:Main algorithm for combined query eval-
uation and result vocalization.

Algorithm 1 initially generates the preamble, summariz-

ing the input query. This is helpful for users to orient them-

selves when exploring a new data set with multi-level hier-

archies. We start voice output for the preamble using func-

tion VO.start. This function is asynchronous and returns

immediately while voice output starts playing.While reading

out the preamble, we create a search tree representing pos-

sible continuations. For that, we use function ST.newNode

Table 3: Overview of auxiliary functions for voice out-
put, speech generation, and speech tree operations.

Function Description

VO.start(s) Starts speaking text s (returns immedi-

ately)

VO.isPlaying Returns true iff voice output is still play-

ing

SG.preamble(q) Generates speech preamble for query q

SG.refinements(q, t) Generates next sentence candidates re-

fining description t for result to query

q

SG.isValid(t ,p) Returns true iff speech text t is valid
according to user preferences p

ST.newNode(t , l) Initializes new search tree node repre-

senting speech with prefix t and last

sentence l

ST.expand(q,p,n) Expands search node n for speech can-

didates for query q respecting user pref-

erences p

ST.sample(q,n) Refines speech quality estimates by sam-

pling speech tree from node n

ST.maxUctChild(n) Returns most promising child of node n
according to UCT formula

ST.addChild(n, c) Adds c as new child for noden in speech
tree

(to generate the search tree root) and function ST.expand

(to expand the tree from the root). The implementation of

both functions is discussed in more detail in Section 4.2.

Next, Algorithm 1 starts iterating. We iterate until the

current speech cannot be refined further (without violating

user preference constraints). In that case, the flag f inished
is set to true. In the first part of each iteration, we refine

our speech quality estimates while voice output is playing.

We use function VO.isPlaying to determine whether the

previous sentence is still being spoken out. We overlap voice

Research 9: Query Processing & Optimization 2 SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

942

output with invocations to the function ST.sample. The im-

plementation of this function is discussed in the next sub-

section. On a high level of abstraction, the function refines

quality estimates about speech candidates via sampling. In

each invocation, it selects an interesting candidate speech

and a data sample, and verifies howwell the speech describes

the data sample.

Our stopping condition is based on the duration of voice

output for the current sentence. After voice output for the

previous sentence stops playing, we decide whether further

output is possible. If so, we select the most promising child

node of the current node in the search tree. Nodes in the

search tree represent alternative speeches. They are associ-

ated with accumulated reward values (capturing how well

the speech seemed to describe data samples) and a number of

visits, i.e. the number of times the corresponding speech was

evaluated. The most promising child maximizes the obtained

average reward. We start voice output for the newly added

sentence and continue iterations.

Note that planning does not start from scratch for each

new sentence. Instead, we simply make the root of a prior

sub-tree the new tree root. This means that all statistics

collected previously within that sub-tree remain available.

Thereby we avoid redundant planning work.

Example 4.1. Figure 2 shows an extract of an example

search tree. Each node is associated with speech fragments.

Each path corresponds to a speech (that concatenates the

sentences associated with all traversed nodes). Each tree

level in the figure is associated with a different aspect of the

data set. The height of the tree (here: the horizontal extent)

is limited by user preferences, limiting speech length and

the number of fragments by a threshold. Here: the first tree

level after the root sets a baseline while the following levels

correspond to refinements.

Our algorithm associates each node in the figure with

quality estimates (not shown in the figure). It refines those

estimates continuously by comparing speech claims against

samples drawn from the database. Sampling starts at the left-

most node in Figure 2 until the preamble (not shown) is read

out completely. Assume that node “The average mid-career
salary is 80 K.” has highest quality estimates at that point.

We use that node as new root for sampling while the latter

sentence is read.

4.2 Search Tree Operations
We describe the operations on the search tree, modeling

speech candidates, in more detail. Table 4 summarizes the

fields that are associated with each search tree node. Those

fields can be decomposed into fields describing the associ-

ated speech, fields capturing the tree structure, and statistics

used by the planner. Fields of the first two categories are

Table 4: Overview of search node fields.

Field Semantics

text Text of speech represented by this node

lastSentence Last sentence of speech represented by

this node

children Set of child nodes of this node

isLea f Flag indicating a leaf node (i.e.,

children = ∅)

visits Number of times the node was visited

during sampling

reward Sum of rewards accumulated during

sampling over all paths traversing this

node

rather self-explaining. We discuss planning and the associ-

ated statistics next.

The goal of planning is to identify speech fragments that

best describe the query result. Of course, we do not know

the full query result but only result samples. This means

that we cannot obtain accurate values for the quality of

a speech candidate. Instead, we can only obtains samples

from a quality distribution whose mean is centered on true

speech quality (we discuss quality samples in more detail in

Section 4.3). To cope with this situation, we need a search

algorithm that can deal with uncertain quality values.

MCTS [1] is among the most popular algorithmic frame-

works that satisfy this requirement. Methods from this area

evaluate solutions, derived from a search tree, via sampling.

In our case, the search tree represents alternative vocaliza-

tions. Sampling refers to testing speech accuracy on ran-

domly selected query result samples.

More precisely, we use the UCT algorithm [14], a specific

representative from the MCTS family. The UCT algorithm

is characterized by its strategy for prioritizing nodes during

sampling. Each search tree node is associated with two coun-

ters: the accumulated reward and the number of times the

node was visited. Those counters can be used to determine

confidence bounds on the average reward realized by spe-

cific nodes. The UCT algorithm calculates the upper bound

of the confidence intervals and prioritizes accordingly. This

strategy is optimistic in that the algorithm assumes for each

node the highest possible reward that is consistent with prior

observations. This strategy also balances the two aforemen-

tioned criteria, exploration (i.e., gathering information on

rarely visited nodes) and exploitation (i.e., refining estimates

for nodes that currently seem promising) as follows. Explo-

ration is motivated by the fact that confidence bounds shrink

once more samples are known. This favors less frequently

Research 9: Query Processing & Optimization 2 SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

943

visited nodes over frequently visited nodes even if the ob-

served mean reward is the same. Exploitation is motivated

by the fact that higher reward averages imply higher con-

fidence bounds. We choose the UCT algorithm as it offers

formal guarantees on striking an optimal balance between

those two criteria [14].

Algorithm 2 shows how the UCT algorithm is applied

in our scenario. The term UCT describes a family of algo-

rithms rather than a single algorithm [1]. Among the more

unusual design decisions we make for our variant is the pre-

processing step, in which we generate the search tree in its

entirety. This is not practical in typical application scenarios

for the UCT algorithm [4]. In our scenario, the height of the

search tree, and therefore the search space size, is however

restricted by user preference constraints. For that reason,

we find it more practical to resolve all overheads related to

tree generation in a pre-processing step. Note finally that

the formula by which we select child nodes in our main algo-

rithm (Algorithm 1) differs from the one used in Algorithm 2.

In Algorithm 2, collecting more information is useful as it

allows us to make better choices in future iterations. This

is why the formula contains a term capturing exploration

reward (the second term). In contrast to that, Algorithm 1

cannot afford further exploration when selecting the best

child node (otherwise, voice output would be interrupted).

Hence, selection is based on exploration bonus alone.

Example 4.2. We consider the search tree from Figure 2

again. The sampling procedure starts at the root node (left),

and picks at each level the most promising child node until

a leaf is reached. Assume that this results in the speech “The
... is 70 K. ... by 5% ... Northeast. ... by 5% ... at least 50 K.” We

evaluate it by comparing against a data sample (described in

more detail in the following section). Assume that a reward

value of 0.7 is obtained. We update the statistics of all three

nodes it refers to: we increment the counter representing

number of visits by one and add 0.7 to the accumulated

reward. The counters of other nodes do not change.

4.3 Speech Evaluation via Sampling
We evaluate a speech based on how well it matches a query

result sample. There has been prior work on using sam-

pling to speed up OLAP query processing [3, 8, 10, 15]. Our

sampling method exploits however several particularities of

voice-based (as opposed to visual) OLAP. First, while a visu-

alization needs to present (at least approximate) values for

each aggregate in the query result, a vocalization can only

address a subset (due to conciseness constraints). Second,

when vocalizing, we can freely choose the level of abstrac-

tion of our claims (by choosing the number of predicates

in each refinement). Third, while a visualization appears at

once, voice output is transmitted sequentially to the user.

1: // Adds child nodes to node n representing valid

2: // speeches for query q according to preferences p.
3: procedure ST.expand(q,p,n)
4: for r ∈SG.refinements(q,n.text) do
5: if ST.isValid(n.text ◦ r ,p) then
6: c ←SG.newNode(n.text , r)
7: n.children ← n.children ∪ {c}
8: ST.expand(q,p, c)
9: end if
10: end for
11: end procedure

12: // Returns child of n optimizing tradeoff

13: // between exploration and exploitation.

14: function ST.maxUctChild(n)
15: // Prioritize unvisited children

16: S ← {c ∈ n.children |c .visits = 0}

17: if S = ∅ then
18: // Maximize UCT formula

19: S ← argmaxc ∈n .children

c .reward/c .visits +
√

2·log(n .visits)
c .visits

20: end if
21: return Random pick from S
22: end function

23: // Sample speech tree for query q from node n,
24: // evaluate speech quality via sampling from the

25: // database, update tree statistics accordingly.

26: procedure Sample(q,n)
27: path ← {n}
28: // Traverse tree until reaching leaf

29: while ¬n.isLea f do
30: n ←ST.maxUctChild(n)
31: path ← path ∪ {n}
32: end while
33: // Evaluate leaf speech via database

34: r ←SpeechDBeval(q,n.text)
35: // Update statistics on tree path

36: for n ∈ path do
37: n.visits ← n.visits + 1
38: n.reward ← n.reward + r
39: end for
40: end procedure

Algorithm 2: Operations on speech search tree.

Altogether, we havemore flexibilitywhen vocalizing query

results instead of visualizing them. We can exploit that flexi-

bility to facilitate sampling. In the context of visual OLAP,

the structure of the visualization is decided upon first and im-

plies constraints on sampling. This makes sampling hard, e.g.

Research 9: Query Processing & Optimization 2 SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

944

1: // Randomly pick an aggregate from the result

2: // of query q to sample speech quality.

3: function PickAggregate(q)
4: // Determine eligible aggregates

5: if q. f ct ∈ {COUNT , SUM} then
6: // All query aggregates

7: E ← q.aддs
8: else
9: // Query aggregates with cache content

10: E ← {a ∈ q.aддs |Ca.size(a)> 0}

11: end if
12: return Pick random element from E
13: end function

14: // Generate value estimate for aggregate q
15: // from cache content.

16: function CacheEstimate(a)
17: // Get fixed-size sample from cache

18: V ←Ca.resample(a)
19: // Calculate count estimate

20: eC ← nrRows ·Ca.size(a)/Ca.nrRead
21: // Calculate sum estimate

22: eS ← eC ·
∑
v ∈V v/|V |

23: // Calculate average estimate

24: eA ← eS/eC
25: return eC , eS , or eA depending on q. f ct
26: end function

27: // Evaluates a speech t based on how well it

28: // predicts database samples approximating the

29: // result for query q, returns reward value.

30: function SpeechDBeval(q, t)
31: // Pick random aggregate with cached entries

32: a ←PickAggregate(q)
33: // Estimate aggregate value from cache

34: e ←CacheEstimate(a)
35: // Calculate user belief based on speech

36: b ← B(a, t)
37: // Compare cache estimate and belief

38: return Pr(e |b)
39: end function

Algorithm 3: Evaluating a candidate speech via data-
base samples.

if a visualization requires samples from rare sub-populations.

In voice-based OLAP, we can collect samples first and choose

output topics based on what samples are obtained later.

Hence, in an inversion of the aforementioned dependencies,

the collected samples motivate topics for voice output.

Algorithm 3 implements those ideas. Function SpeechD-

Beval (used in Algorithm 2) takes as input a query and a

speech text. It evaluates how well the speech text describes

the query result. As the query result is not fully available, it

uses samples to get an approximation. The function returns

a reward value between zero and one. The higher the reward,

the higher the likelihood that the speech accurately describes

the query result.

Each invocation of SpeechDBeval performs the following

steps. First, we select a random aggregate from the query

result. Next, we estimate a value for this aggregate from

database samples. We retrieve those samples from a cache

whose specifics are discussed later. Then, we generate a

probabilistic model of user beliefs about data after listening

to the speech. For that, we use the behavior model that was

presented in Section 3.4. We do not generate a full model

of the user’s beliefs. Instead, it is sufficient to calculate user

beliefs only for the aggregate selected previously. The user

belief corresponds to a probability distribution. Hence, we

return as reward the probability it assigns to the cache-based

estimate. Hence, we reward speech text leading users to

beliefs that match the data well.

We continuously collect samples from the database that

are stored in a cache. Compared to approaches for OLAP

visualization, we have much more time for sampling without

violating run time constraints. As we overlap sampling with

voice output, most output sentences can benefit from many

seconds of sampling time without degrading user experience.

The speech grammar presented in Section 3.2 places the pre-

amble and the baseline speech fragments first. The preamble

describes the query scope and does not require information

from the database. Also, the baseline refers to the query re-

sult as a whole and does not require samples with regards

to smaller sub-populations. We can choose to make refining

statements about small sub-populations. Those refinement

statements are then already based on samples collected over

several seconds (often up to ten seconds). This sampling

approach worked well for data sets we experimented on

(see Section 5). It could be extended using prior work on

sampling in the context of OLAP (e.g., specialized indexing

structures [10]) to retrieve estimates for particularly small

data subsets.

We consider the cache content when picking an aggregate

for speech evaluation in Function PickAggregate. We can

only evaluate a speech based on an aggregate if at least some

information on its value is available in the cache. Function

Ca.size(a) returns the number of entries stored in cache

whose attributes match the constraints of aggregate a. The
cache keeps track of counts during insertions in order to

return counts in constant time. For an average aggregation

function, we need at least one entry to derive estimates. For

sum and count, the fact that no corresponding entry was

retrieved yields information as well (by setting it in relation

to the total number of samples retrieved from the database).

Research 9: Query Processing & Optimization 2 SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

945

Among all eligible aggregates, we select one randomly with

uniform random distribution. We use a uniform distribution

as each result aggregate is equally important according to

our quality metric (see Section 2).

Function CacheEstimate estimates a value for the given

aggregate. We construct an estimate based on a fixed size sub-

sample from the cached rows associated with one specific

aggregate. This subsample is retrieved by a call to Func-

tion Ca.resample(a). The cache indexes entries with regards

to the current query aggregates at cache insertion time to

implement this function efficiently. In our current imple-

mentation, we use a fixed size of 10 samples. We do not

use the full set of cached samples for the current aggregate.

This would slow down sampling more and more as itera-

tions progress (and as the cache is being filled). Alternatively,

old cache entries can be discarded periodically to avoid this

problem. We calculate unbiased estimators for the standard

aggregation function as shown in the pseudo-code. Variable

nrRows denotes the number of rows in the entire database.

Function Ca.NrRead returns the total number of rows con-

sidered for caching. This is in general lower than the number

of cached rows (since the cache inserts rows only if they fall

within the current query scope). Finally, the function returns

the appropriate estimate, given the input query aggregation

function.

Example 4.3. We sketch out how quality estimates are ob-

tained for the speech introduced (in abbreviated form) in the

previous example. First, we select an aggregate to evaluate

the speech on. The speech uses the average as aggregation

function. Hence, we only consider aggregates for which at

least one cache entry is available. Assumewe select the aggre-

gate “Graduates from the Midwest with an average salary of

at least 50 K”, respecting this condition. We use a subsample

from the cache to calculate a rounded salary estimate of 90 K

for that group. Next, we analyze the speech text and apply

our user behavior model to obtain a probability distribution.

Assume we obtain the normal distribution N(82K , 40K) as
a representation of user belief after listening to our speech.

The reward value is 0.1 since 10% is the probability to obtain

this rounded value (i.e., a value between 85 K and below 95 K)

according to user belief.

4.4 Extensions
Our algorithm can be extended to provide users with in-

formation on uncertainty. In order to transmit confidence

bounds, we implemented two modes. Either, we generate the

default speech and attach a general warning for the user if

confidence in spoken values is lower than a threshold. Or, we

speak out the precise confidence bounds at the point where

voice rendering for the corresponding sentence starts. We

1,000
2,000
3,000
4,000

L
a
t
e
n
c
y

-

L
a
t
e
n
c
y

-,R

L
a
t
e
n
c
y

-,RD

0

2,000
4,000
6,000

L
a
t
e
n
c
y

-,RDA

L
a
t
e
n
c
y

N,-

L
a
t
e
n
c
y

N,D

0 0.2 0.4
0

2,000

4,000

6,000

Quality

L
a
t
e
n
c
y

N,DA

0 0.2 0.4

Quality

L
a
t
e
n
c
y

NW,-

0 0.2 0.4

Quality

L
a
t
e
n
c
y

NW,A

Optimal Unmerged Holistic

Figure 3: Performance of vocalization variants.

can calculate confidence bounds based on the random sam-

ples we retrieve in the cache. The way in which confidence

bounds are calculated is not specific to vocalization.

5 EXPERIMENTAL EVALUATION
We analyze the performance of our approach for query eval-

uation and result vocalization. We compare against the ap-

proach by Trummer et al. [25] for vocalizing relational tables

(note that another recently proposed vocalizationmethod [24]

is only applicable to time series data). We use two data sets,

a large data set containing information on flight cancella-

tion probabilities with three dimensions, and a small data set

containing information on mid-career salaries with two di-

mensions. All details of our experimental setup can be found

in the appendix (Section B.2). Section 5.1 compares vocal-

ization approaches in terms of processing time and speech

quality. In Section 5.2, we report on the results of a user

study in which crowd workers analyze data via different

vocalization methods.

5.1 Processing Time and Speech Quality
We compare different variants of our approach in terms of

latency (i.e., time after query submission until the speech

starts) and in terms of speech quality. For the latter, we mea-

sure exact speech quality according to our model and based

on the entire data set (i.e., average over all query result fields

of the probability predicted for the actual value by the user

belief distribution, created by that speech). We compare an

“optimal” approach generating optimal speeches consider-

ing all data and calculating precise quality for each speech

Research 9: Query Processing & Optimization 2 SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

946

before starting output, the “holistic” approach proposed in

the previous section, and an “unmerged” approach which

does not merge vocalization, sampling, and planning. Instead,

it samples according to the same strategy as the “holistic”

approach for 500 ms (threshold for interactivity) and then

selects the speech with highest quality estimates.

Figure 3 reports results for different queries on a 600 MB

data set about flight cancellations, calculating average flight

cancellation probability. Queries are specified as pairs X,Y

where X are members in predicates and Y dimensions for the

breakdown. R, D, A are region, date, and airline respectively,

N designates the North-East region and W is winter (e.g.,

N,DA is a query calculating cancellation probability for the

North-East, broken down by date (at season granularity) and

airline.

We make two observations. First, the latency for optimal

vocalization is much higher than for other approaches and

far above the “interactivity threshold” of 500ms (note that we

process data from memory, disk access would likely worsen

results further). This is explained by the fact that the optimal

approach samples neither from the data nor in the plan space.

Second, the quality of the unmerged approach is typically far

below the other baselines. The unmerged approach cannot

overlap sampling and planning time with vocalization. It

therefore has less time to read data and explore the search

space, compared to its competitors. Third, the quality of the

holistic approach is almost identical to the optimal one. For

the majority of queries, both approaches generate exactly

the same speech.

So far, we compare approaches based on quality estimates,

based on our user model. This model is based on a pilot user

study but of course simplifying. Hence, we need to verify

that speeches with higher quality estimates lead indeed to

a better understanding of the data by users. We performed

an additional user study on AMT, asking users to estimate

query result fields based on different voice descriptions. We

selected a query in which all three approaches produced

different speeches (which is rare for the optimal and the

holistic approach). Table 5 shows alternative descriptions

generated by the three methods (without the preamble). A

second example (showing similar tendencies) can be found

in the appendix. The full query result, containing 20 fields,

can be found in the appendix (Table 12). We posted 10 tasks,

paying $1 per task and promising a bonus of $2 if worker’s

replies are close to the actual result. Each crowd worker was

led to a separate Google sheets spreadsheet containing value

combinations for the two dimensions (region and season, in

the same order as in Table 12), and links to the three voice

descriptions.We instructed users to “listen carefully” to voice

descriptions and to “estimate values in each row”. We posted

tasks at 8:39 PM PDT, received nine replies, and eliminated

one duplicate submission by the same crowd worker.

Table 5: Speeches generated by different approaches
summarizing the query result from Table 12.

Approach Speech Quality

Optimal Around two percent is the Average

cancellation probability. Values in-

crease by 50 percent for flights start-

ing from the North East. Values in-

crease by 100 percent for flights sched-

uled in Winter.

0.25

Unmerged Over ten percent is the Average can-

cellation probability. Values increase

by 100 percent for flights starting

from the West. Values increase by 50

percent for flights scheduled in Win-

ter.

0.0

Holistic Around one point five percent is the

Average cancellation probability. Val-

ues increase by 100 percent for flights

starting from the North East. Values

increase by 100 percent for flights

scheduled in Winter.

0.24

Table 6: Absolute error (%) made by users estimating
all result fields based on different speech descriptions.

User Optimal Holistic Unmerged

1 27.2 39.4 34.4

2 1.16 0.81 12

3 1.16 0.84 11.7

4 1.16 0.8 11.9

5 5.9 0.72 11.7

6 1.2 0.8 12.2

7 1.6 0.8 11.9

8 50 56 52

Median 1.4 0.81 12

Table 6 summarizes results. We compare the user’s esti-

mate for each result field against the actual value, and aver-

age the absolute distance over all result fields. The general

tendencies correlate well with our initial quality estimates.

Optimal and holistic approach lead to very similar results,

the unmerged speech fares far worse. We observed two out-

liers (user 1 and 8), who we believe misunderstood speech

fragments such as “values increase by 100%” to mean “values

increase to 100%”. If using our system regularly, such mis-

understandings would certainly be resolved. For six out of

Research 9: Query Processing & Optimization 2 SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

947

eight users, the holistic speech leads to an average error of

rounded 0.8% at most. Given the extreme constraints of the

scenario, we believe that those results are promising. Further,

detecting relative tendencies in data is in certain scenarios

(e..g, if users are interested in extreme values) more impor-

tant than absolute values. We show in the appendix that

users interpret relative tendencies correctly in the majority

of cases for speeches generated by the optimal or holistic

approach.

5.2 Exploratory Analysis Study
We compare our vocalization method against a baseline [24]

in a user study. We recruited participants on the AMT plat-

form. Participants had access to a Web interface for voice-

based OLAP. The Web interface allows users to switch freely

(i.e., for each single query) between the two compared vocal-

ization methods. Users can also choose between two input

modes: either users issue voice commands or commands are

entered via keyboard. Our research focus in this paper is

on vocalization, i.e. voice output. Our component for inter-

preting user input is rather simple and based on keywords.

Users can drill down, roll up, and add or remove dimensions

in the OLAP result by mentioning related keywords. Users

can request help (via keyboard or voice input) to obtain all

available keywords (via voice output). We log user queries on

the server and asked users to provide their crowd worker ID.

This allowed us to correlate user preferences to the queries

they issued.

We issued 40 human intelligence tasks (HITs) in total, 20

hits for analyzing the aforementioned data set about flight

cancellations, and 20 hits for analyzing a small data set about

average salary (we provide more details on those data sets

in the appendix). Our tasks were open to any crowd worker

and we paid a reward of 50 cents per task. We posted the

study at 9:33 PM PDT and associated it with the keywords

“user study, data analysis, voice output”. We elicited input

from crowd workers via the instructions “Use the interface

for at least five minutes to answer the following questions”,

followed by questions about data (“State five non-trivial facts

you learnt from your analysis”), input method preferences

(“Which input method did you prefer”, “Why do you prefer

this input method”), and output method preferences (“What

output method do you prefer”, “Why do you prefer this out-

put method”).

Users issued in average 26 and up to 125 queries per ses-

sion (we only count queries that were parsed correctly and

trigger vocalization, excluding help requests). Table 7 shows

a few, representative example facts extracted by different

crowd workers from the flight data set. We also report the

Table 7: Example facts extracted by crowd workers via
voice-based data analysis.

Dimensions Fact

Flight date the main cancellation probability are on winter

and so thanks to the weather, around 2% is the

average cancellation probability

Airline, Start

airport

An Alaska Airlines flight is 200% more likely

than normal to have a cancellation from Or-

lando.

Start airport The greatest cancellations are in the northeast,

and it seems there may be a trend where the

middle of the country otherwise sees some

of the higher cancellation rates, as places like

Iowa/Illinois/Arkansas had fairly high values,

while places like Florida/Georgia/Minnesota

were less.

Table 8: Preferences of crowd workers with regards to
vocalization, comparing a prior vocalization method
against this approach. Plus indicates slight preference,
repeated plus indicates strong preference.

Data Prior++ Prior+ Neutral This+ This++

Salary 2 1 7 4 6

Flights 0 3 4 5 8

dimensions that the fact refers to. As those examples demon-

strate, workers were able to extract facts related to all dimen-

sions of the data set. Workers were able to extract high-level

insights relating to large subsets of the data (e.g., flights in the

northeast) as well as claims about small sub-populations (e.g.,

flights operated by one specific airline in Orlando). We saw

examples of workers combining results frommultiple queries

into one claim (e.g., the third claim combines data that can

only be retrieved via separate queries due to the structure of

our dimension hierarchies). We also saw examples of work-

ers combining insights learned from the data with data from

other sources (e.g., the first claim relates higher cancellation

probabilities in Winter to associated weather conditions).

Asked about input preferences, about one quarter of users

(nine out of 40) preferred keyboard input over voice input.

Some of the cited reasons do not intrinsically relate to the

quality of that input method (e.g., reasons such as “I have

no microphone” or “Only because I was in a noisy environ-

ment”). Others cite problems with speech recognition and

faster keyboard input. The reasons behind a voice input pref-

erence include “Easier than typing” or “There is something

rewarding about getting info ’talking’ with the computer”.

Research 9: Query Processing & Optimization 2 SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

948

Table 9: Length of speeches (in characters) generated
during data analysis by crowd workers.

Scenario Aggregate This Prior

Salary Average 146 240

Maximum 400 2500

Flights Average 190 1219

Maximum 432 54838

Voice input is not the focus of this work. Still, it is interesting

that a non-negligible part of users prefer voice input even

with a relatively simple implementation.

Table 8 reports user preferences with regards to the vo-

calization methods. Users chose between slight or strong

preference for our approach or the baseline, or indicated

equal preference for both methods. Clearly, most users ex-

press a preference for our approach. This effect is stronger

for the flights data set. The reasons for a baseline preference

included a higher degree of detail as well as a preference for

the output format resembling bullet points. The majority of

users prefer our approach, citing long waiting and output

times with regards to the baseline and ease of understanding

as reasons. Many users based their preferences on speech

length. We analyzed the logs to see whether those claims are

based on actual tendencies.

Table 9 analyzes the length (in characters) of speeches

generated over the user study. Results are broken down by

method and scenario. Clearly, speeches generated by our

method are more concise. The difference is more pronounced

for the flights data set. This is expected as it features more

dimensions (and the number of aggregates reported by the

baseline in the worst case increases exponentially in the

number of dimensions). For the flights data set, speeches

generated by the baseline are over six times longer in average.

The maximal baseline speech length exceeds the maximal

speech length of our approach by two orders of magnitude.

The reasons cited by users for preferring our approach relate

therefore to measurable effects. Overall, generating concise

summaries with length restrictions seems more appropriate

than the baseline approach for OLAP-style data analysis.

6 RELATEDWORK
There are two recently proposed algorithms for vocalizing

data sets [24, 25]. We compare against the first vocalization

method [25] in our experimental evaluation. The method

differs in multiple aspects from our approach. First, it does

not interleave query processing and result vocalization. Sec-

ond, it does not allow to place limits on speech output length.

Third, it uses different methods (i.e., linear programming

and greedy algorithms) to generate speeches. Altogether, the

prior baseline is not optimized for vocalizing OLAP results

(which can be large) in an interactive scenario.

The second vocalization approach [24] is specific to time

series data. It is not applicable to tabular OLAP results. The

focus on time series data motivates a specific speech struc-

ture (a sequence of patterns) and optimization algorithm

(based on dynamic programming). Also, the processing algo-

rithm requires data to be indexed according to query range

conditions. In case of OLAP, it is typically not possible to

index data according to all possible combinations of dimen-

sion values. The time series approach uses a method based

on optimal experimental design to determine interesting

time points for data retrieval. This would not make sense

in our scenario: we cannot efficiently retrieve previously

chosen parts of the query result without indexes. Altogether,

the prior approach makes fundamentally different design

decisions compared to our work.

Our work relates to prior work proposing tailored process-

ing strategies to generate visualizations efficiently [11–13].

Our work differs by its focus on voice output instead of

visual output. This focus creates specific challenges (i.e., con-

ciseness constraints) as well as specific opportunities (e.g.,

leveraging the sequential nature of voice output).

Furthermore, this work relates to prior work on OLAP pro-

cessing and user interaction. For instance, our user model

is based on prior work in the context of user-adaptive ex-

ploration [9, 18, 22]. Our work is similar in that we present

a user-centric metric quantifying the value of information

transmitted, followed by a method that efficiently selects

which information to transmit. Of course, our work is spe-

cific as it focuses on a very specific output mode. Also, this

work connects to prior work on using sampling to answer

OLAP queries [3, 8, 10, 15]. However, we do not need to ap-

proximate a fixed set of aggregates with a certain precision.

Instead, we only need to determine the speech approximating

the query result aggregates best.

Finally, our work relates to prior work in sonification and

auditory display [7, 21]. The main difference between our

and prior work is the focus on voice output (as opposed to

non-speech sounds) and large data sets. This motivates our

approach for interleaved processing and voice output.

7 CONCLUSION
We introduce the problem of generating voice answers to

OLAP queries. We introduce a speech model and a speech

generation approach. Our approach is tailored to the particu-

larities of our scenario. We demonstrate significant speedups

over baselines and better user preference results in extensive

experiments. In future work, we plan to improve the voice

recognition component of our current system.

Research 9: Query Processing & Optimization 2 SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

949

A FORMAL ANALYSIS
A.1 Speech Properties
Each speech starts with an absolute claim on result averages,

the baseline statement. We prove formally that our recur-

sive formula from Section 3.4 creates belief models that are

consistent with the baseline statement.

Theorem A.1. We assign each speech to a user belief model
that is consistent with its baseline statement.

Proof. We use structural induction. The theorem holds

trivially for speeches that consist only of a single baseline

statement (induction start). In that case, we assign each re-

sult aggregate to the same baseline value and are therefore

consistent. Assume now (induction step) thatM yields a

consistent assignment for speech t . We show that the same

must hold for speech t ◦ r where r represents an arbitrary

refinement. Denote bym the number of aggregates within

the scope of r and by n the total number of result aggre-

gates. Further, denote by ∆ the absolute change assigned

to aggregates within the scope. Hence, −m · ∆/(n −m) is
the change assigned implicitly to aggregates outside of r ’s
scope. Summing over the change in all aggregates yields

m · ∆ −m · (n −m) · ∆/(n −m) = 0. As the assignment for t
was consistent with its baseline (i.e., the average of expected

values over all aggregates yields the value postulated in the

baseline), the new assignment for t ◦ r is, too. □

A.2 Complexity Analysis
We analyze time complexity of our algorithm. Our algorithm

is an anytime algorithm that continues sampling as long as

voice output is not finished. Hence, we analyze its complexity

per iteration and its pre-processing overheads.

We denote by k the maximal number of speech fragments

(k is upper-bounded according to user preferences). Bym,

we denote the maximal number of children of any node in

the search tree. This is a property of the speech grammar

and not of the input query.

The following lemma refers to Function SpeechDBeval

from Algorithm 3.

Lemma A.2. Evaluating a speech with regards to one aggre-
gate and sample takes O(k) time.

Proof. We can pick a suitable aggregate in constant time

(we assume that the cache stores aggregates for which in-

formation is available in a structure allowing constant-time

random access). Our cache-based estimate is derived from

a fixed-size cache sample. User belief for a specific aggre-

gate can be calculated independently from other aggregates.

To calculate the distribution for one specific aggregate, we

require O(1) operations per speech fragment. □

The following lemma refers to Function Sample from Al-

gorithm 2.

Theorem A.3. Sampling the search tree takesO(k ·m) time.

Proof. We traverse at most k nodes on the path from the

root to a leaf. For each visited node, we must compare all its

children to identify the most interesting one. Hence, the time

for identifying the most interesting speech to evaluate is in

O(k ·m). According to the previous lemma (and as updating

the statistics takes only time in O(k)), the time complexity

for this operation dominates. □

The latter theorem describes the complexity of an itera-

tion of the inner while-loop of Algorithm 1. Having a low

complexity for the inner loop is important: otherwise, we

might have a perceptible pause between two sentences in

voice output. The low complexity of O(k · m) makes this

extremely unlikely, matching our experiences in practice.

We analyze time complexity of the pre-processing step of

Algorithm 1.

Theorem A.4. Pre-processing time is in O(mk).

Proof. Each node in the search tree has at mostm chil-

dren. Hence, the maximal number of nodes in the search tree

is in O(mk). Initializing all fields for a node takes constant

time. □

This complexity is acceptable for two reasons. First, pre-

processing is overlapped by a first sentence in voice output.

Hence, pre-processing is typically not on the critical path.

Second, k is due to limits of human perception (maximal

number of speech fragments that can be kept in short-term

memory). Such limits cannot be expected to scale. Hence,

prior work considers those limits to be constants during com-

plexity analysis [25]. Under those assumptions, complexity

of pre-processing is polynomial.

B ADDITIONAL EXPERIMENTS
We report additional experimental results and provide more

details on the setup of our studies.

B.1 Implicit Assumptions Pilot Study
Table 10 provides more details on our pilot study on implicit

assumptions. We test whether users tend to make certain

assumptions in the absence of more specific information.

Due to the need for concise voice output, this scenario is

the rule. We use the results of this user study to model how

users react to hearing voice output.

Our task was open to crowd workers with an average

acceptance rate of at least 50%. We paid five cents per task

and promised a bonus of five cents if worker answers match

the majority opinion. The study was started at 10 AM PDT.

Research 9: Query Processing & Optimization 2 SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

950

Table 10: Detailed results for pilot study on implicit assumptions.

Model Aspect Question Answer 1 Answer 2 Answer 3 #Replies
(1/2/3)

Symmetry Assume the typical salary is $10. Which of

the following options seems most likely to

you?

Most people get

more than $10

salary

About half the

people get less

and half the peo-

ple get more than

$10 salary

Most people get

less than $10

salary

3/15/2

Concentration Assume the typical salary is $10. Which of

the following options seems most likely to

you?

A salary between

$10 to $15 is more

likely than one

between $15 and

$20

A salary between

$10 to $15 is

equally likely as

one between $15

and $20

A salary between

$15 and $20 is

more likely than

one between $10

and $15

15/4/1

Again, assume the typical salary is $10.

Which of the following options seems most

likely to you?

A salary between

$5 to $10 is more

likely than a

salary between

$1 to $5

A salary between

$1 to $5 is equally

likely as a salary

between $5 and

$10

A salary between

$1 to $5 is more

likely than a

salary between

$5 to $10

13/5/2

Variance Assuming the typical salary is $10. Which

percentage of people are paid more than $15?

Between 0% and

20%

Between 20% and

40%

Between 40% and

60%

11/8/1

Assuming the typical salary is $10. Which

percentage of people are paid less than $5?

Between 0% and

20%

Between 20% and

40%

Between 40% and

60%

17/3/0

Assume the typical salary is $100. Which per-

centage of people are paid more than $150?

Between 0% and

20%

Between 20% and

40%

Between 40% and

60%

11/7/2

Again, assume the typical salary is $100.

Which percentage of people are paid less

than $50?

Between 0% and

20%

Between 20% and

40%

Between 40% and

60%

10/7/3

Uniformity Assume the average salary over cities A and

B is $10. Without further information, what

do you assume about the salary distribution?

The salary in city

A is higher

The salary in city

A is about the

same as in city B

The salary in city

B is higher

4/15/1

Composition Salary doubles for profession A compared

to the average. It also doubles when living

in city B. What is your salary estimate for a

person with profession A living in city B?

The same as aver-

age

Two times higher

than average

Four times higher

than average

4/9/7

Salary halves for profession A compared to

the average. It doubles when living in city

B. What is your salary estimate for a person

with profession A living in city B?

The same as aver-

age

Two times higher

than average

Four times higher

than average

14/3/3

We used the keywords “user study, data, filling in gaps” to

advertise the study on AMT. Table 10 reports the questions

we used to test implicit assumptions. Each question focuses

on verifying one of the hypotheses outlined in Section 3.

Each question corresponds to one AMT human intelligence

task. Questions were asked (AMT batch order) in the order

in which they appear in Table 10. We elicit replies via the

following instructions: “We study how users fill in missing

information in a description. Answer the following question

by gut feeling.” We offered three answer possibilities per

question (as a radio button, options appear top down from

Answer 1 to Answer 3). For most questions, two of those

answer possibilities are inconsistent with our hypothesis. As

can be seen from the detailed results, the hypotheses are ver-

ified in most cases. Typically, around three quarters of crowd

workers provide an answer supporting our hypothesis.

B.2 Experimental Setup
We provide more details on the experimental setup in Sec-

tion 5. We use two data sets for the experiments: a data set

correlating mid-career salary with other factors
2
and data

on flight cancellations in 2015
3
. We deliberately selected

2
https://www.kaggle.com/wsj/college-salaries

3
https://www.kaggle.com/usdot/flight-delays

Research 9: Query Processing & Optimization 2 SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

951

https://www.kaggle.com/wsj/college-salaries
https://www.kaggle.com/usdot/flight-delays

Table 11: Statistics on benchmark data.

Data Set Dimensions #Rows Size

Mid-career

salary

College location,

start salary

320 36 KB

Flight cancel-

lations

Flight date, airline,

start airport

5.3 million 600 MB

one very small data set (the salary data set with 36 KB) and

a larger data set (data on flights with 600 MB). This enables

us to demonstrate how user preference and processing over-

heads vary as a function of data size for different query

evaluation and vocalization methods. For salary data, we

consider the dimensions college (with three levels: region,

state, and specific institution), and the dimension start salary

(with two levels: rough start salary and precise start salary).

For flights data, we consider three dimensions: the start air-

port (with four levels: region, state, city, and airport), the

flight date (with levels season and month), and the airline

(one level). Table 11 summarizes basic statistics with regards

to the two data sets.

Our approach can be tuned by the granularity at which

numerical values are represented. Following prior user stud-

ies [24], we reduce precision of voice output to one sig-

nificant digit for numerical values. We restrict the output

length of the main speech (without preamble) to 300 char-

acters. This value is recommended for voice-based interac-

tions [5]. We compare our approach against a prior vocal-

ization method [25]. By “Prior”, we refer to this baseline in

all plots. Among the three prior algorithms, we select the

greedy version. The greedy algorithm has been shown to

realize good tradeoffs between planning time and output

quality. We set configuration parameters mS = mC = 1

which are the settings used in the baselines user study.

We implemented both algorithms in Java 1.8. We use Post-

gres 9.6 as underlying database engine. For our user studies,

we made both approaches accessible via a Web interface. The

server-side component of the Web version was implemented

using the JEE framework
4
. The Web client uses JavaScript

to send asynchronous requests to the server. Speech recogni-

tion and voice output are realized via the ResponsiveVoiceJS

API
5
(which is based on the Google speech-to-text service).

We run the performance benchmarks in Section 5.1 on

an MacBook Air computer with a 2.2 GHz Intel Core i7 pro-

cessor and 8 GB of RAM. Our Web interface runs on the

Heroku platform
6
, using the “basic” service plan for the

4
http://www.oracle.com/technetwork/java/javaee/

5
https://responsivevoice.org/

6
https://www.heroku.com/

Table 12: Full result for a query about flight cancella-
tion probabilities, broken down by region and season.

Region Season Cancellation

the North East Winter 0.0555

the Midwest Winter 0.03944

the South Winter 0.02851

the North East Spring 0.02296

the Midwest Summer 0.018

the North East Summer 0.01662

the South Spring 0.01656

the Midwest Spring 0.01576

the West Winter 0.01562

the United States territories Winter 0.01424

the Midwest Fall 0.01313

the South Summer 0.01097

the West Summer 0.00927

the North East Fall 0.00794

the United States territories Summer 0.00741

the West Spring 0.00725

the United States territories Spring 0.0065

the West Fall 0.0056

the South Fall 0.00537

the United States territories Fall 0.00183

database backend. All crowd user studies are performed on

the Amazon Mechanical Turk (AMT)
7
platform.

B.3 Speech Quality Comparisons
We provide additional details on the speeches generated by

different approaches. First, Table 12 shows the detailed query

result described by the speeches in Table 5. Table 13 shows

speeches generated for another query, the tendencies are

similar. Table 14 is complementary to Table 6 (reporting

absolute errors). It reports the number of relative tendencies

in the query result that were correctly identified by users.

Given two estimates e1 and e2 for two result fields with

actual values v1 and v2, we count the tendency as correctly

identified if e1 < e2 and v1 < v2 or e1 ≥ e2 and v1 ≥ v2.
Table 14 reports percentage of correctly identified tendencies

over all query result field pairs. The tendencies are the same

as for Table 6.

ACKNOWLEDGMENTS
This research was supported by the Google Faculty Research

Award “Optimizing Voice-Based Output of Relational Data”.

REFERENCES
[1] CB Browne and Edward Powley. 2012. A survey of monte carlo tree

searchmethods. Trans. on Computational Intelligence and AI in Games 4,

7
https://www.mturk.com/

Research 9: Query Processing & Optimization 2 SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

952

http://www.oracle.com/technetwork/java/javaee/
https://responsivevoice.org/
https://www.heroku.com/
https://www.mturk.com/

Table 13: Speeches generated by different approaches
answering the same query. The full result has 378
fields, quality is measured via our user belief model.

Approach Speech Quality

Optimal Five to ten percent is the Average can-

cellation probability. Values increase

by 50 percent for flights operated by

American Eagle Airlines Inc..

0.3

Unmerged Around a quarter percent is the Aver-

age cancellation probability. Values in-

crease by 200 percent for flights start-

ing from Massachusetts. Values in-

crease by 100 percent for flights sched-

uled in December.

0.05

Holistic Five to ten percent is the Average can-

cellation probability. Values increase

by 50 percent for flights starting from

Massachusetts. Values increase by 50

percent for flights scheduled in Febru-

ary.

0.28

Table 14: Correct relative tendencies in user input (%).

User Optimal Holistic Unmerged

1 71 70 55

2 73 72 56

3 73 72 56

4 73 72 56

5 73 70 56

6 63 72 53

7 73 72 56

8 61 63 46

Total 70 70 54

1 (2012), 1–49. http://ieeexplore.ieee.org/xpls/abs{_}all.jsp?arnumber=

6145622

[2] Dharmil Chandarana, Vraj Shah, Arun Kumar, and Lawrence Saul. 2017.

SpeakQL: towards speech-driven multi-modal querying. In HILDA. 1–
6.

[3] Yu Feng and Shan Wang. 2002. Compressed data cube for approximate

OLAP query processing. Journal of Computer Science and Technology
17, 5 (2002), 625–635. https://doi.org/10.1007/BF02948830

[4] Sylvain Gelly, L Kocsis, and Marc Schoenauer. 2012. The grand chal-

lenge of computer go:monte carlo tree search and extensions. Commun.
ACM 3 (2012), 106–113. http://dl.acm.org/citation.cfm?id=2093574

[5] Google. [n. d.]. Google Assistant SDK.

https://developers.google.com/assistant/sdk/overview.

[6] Silviu Guiasu and Abe Shenitzer. 1985. The principle of maximum

entropy. The Mathematical Intelligencer 7, 1 (1985), 42–48. https:

//doi.org/10.1007/BF03023004

[7] Thomas Hermann, Andy Hunt, and John G Neuhoff. 2011. The
Sonification Handbook. 301–324 pages. https://doi.org/10.1017/

CBO9781107415324.004 arXiv:arXiv:1011.1669v3

[8] Ruoming Jin, Leo Glimcher, Chris Jermaine, and Gagan Agrawal. 2006.

New sampling-based estimators for OLAP queries. In ICDE. 18. https:

//doi.org/10.1109/ICDE.2006.106

[9] Manas Joglekar, Hector Garcia-molina, and Aditya Parameswaran.

2015. Smart drill down. VLDBJ 8, 12 (2015), 1928–1931.

arXiv:arXiv:1412.0364v1

[10] Shantanu Joshi and Christopher Jermaine. 2008. Materialized sample

views for database approximation. ICDE 20, 3 (2008), 337–351. https:

//doi.org/10.1109/TKDE.2007.190664

[11] Uwe Jugel, Zbigniew Jerzak, and Gregor Hackenbroich. 2014. M4 :

A Visualization-Oriented Time Series Data Aggregation. VLDB 7, 10

(2014), 797–808. https://doi.org/10.14778/2732951.2732953

[12] Niranjan Kamat and Arnab Nandi. 2017. InfiniViz: Interactive Vi-

sual Exploration using Progressive Bin Refinement. arXiv preprint
arXiv:1710.01854 (2017). arXiv:1710.01854 http://arxiv.org/abs/1710.

01854

[13] Albert Kim, Eric Blais, Aditya Parameswaran, Piotr Indyk, Sam Mad-

den, and Ronitt Rubinfeld. 2015. Rapid sampling for visualizations

with ordering guarantees. VLDB 8, 5 (2015), 521–532. https://doi.org/

10.14778/2735479.2735485 arXiv:1412.3040

[14] Levente Kocsis and C Szepesvári. 2006. Bandit based monte-carlo

planning. In European Conf. on Machine Learning. 282–293. http:

//www.springerlink.com/index/D232253353517276.pdf

[15] Xiaolei Li, Jiawei Han, Zhijun Yin, Jae-Gil Lee, and Yizhou Sun. 2008.

Sampling cube: a framework for statistical olap over sampling data. In

SIGMOD. 779–790. https://doi.org/10.1145/1376616.1376695

[16] Zhicheng Liu and Jeffrey Heer. 2014. The effects of interactive latency

on exploratory visual analysis. IEEE Transactions on Visualization &
Computer Graphics 20, 12 (2014), 2122–2131. https://doi.org/10.1109/

TVCG.2014.2346452

[17] Gabriel Lyons, Vinh Tran, Carsten Binnig, Ugur Cetintemel, and Tim

Kraska. 2016. Making the case for Query-by-Voice with EchoQuery.

In SIGMOD. 2129–2132.
[18] Patrick Marcel, Place Jean Jaurès, and Stefano Rizzi. 2012. Towards

intensional answers to OLAP queries for analytical sessions. In DOLAP.
49–56.

[19] Robert B. Miller. 1968. Response time in man-computer conversa-

tional transactions. InAFIPS. 267–277. https://doi.org/10.1145/1476589.
1476628

[20] Navneet Potti and Jignesh M. Patel. 2015. DAQ: A new paradigm for

approximate query processing. VLDB 8, 9 (2015), 898–909. https:

//doi.org/10.14778/2777598.2777599

[21] Rameshsharma Ramloll, Wai Yu, and Beate Riedel. 2001. Using non-

speech sounds to improve access to 2D tabular numerical information

for visually impaired users. In Conference of the British HCI Group.
515–529. http://eprints.gla.ac.uk/3223/

[22] S. Sarawagi. 2000. User-adaptive exploration of multidimensional data.

In VLDB. 307–316. http://citeseer.ist.psu.edu/sarawagi00useradaptive.

html

[23] Ben Shneiderman. 1984. Response time and display rate in human

performance with computers. Comput. Surveys 16, 3 (1984), 265–285.
https://doi.org/10.1145/2514.2517

[24] Immanuel Trummer, Mark Bryan, and Ramya Narasimha. 2018. Vocal-

izing large time series efficiently. In VLDB. 1–12.
[25] Immanuel Trummer, Jiancheng Zhu, and Mark Bryan. 2017. Data

vocalization: optimizing voice output of relational data. VLDB 10, 11

(2017), 1574–1585.

Research 9: Query Processing & Optimization 2 SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

953

http://ieeexplore.ieee.org/xpls/abs{_}all.jsp?arnumber=6145622
http://ieeexplore.ieee.org/xpls/abs{_}all.jsp?arnumber=6145622
https://doi.org/10.1007/BF02948830
http://dl.acm.org/citation.cfm?id=2093574
https://doi.org/10.1007/BF03023004
https://doi.org/10.1007/BF03023004
https://doi.org/10.1017/CBO9781107415324.004
https://doi.org/10.1017/CBO9781107415324.004
http://arxiv.org/abs/arXiv:1011.1669v3
https://doi.org/10.1109/ICDE.2006.106
https://doi.org/10.1109/ICDE.2006.106
http://arxiv.org/abs/arXiv:1412.0364v1
https://doi.org/10.1109/TKDE.2007.190664
https://doi.org/10.1109/TKDE.2007.190664
https://doi.org/10.14778/2732951.2732953
http://arxiv.org/abs/1710.01854
http://arxiv.org/abs/1710.01854
http://arxiv.org/abs/1710.01854
https://doi.org/10.14778/2735479.2735485
https://doi.org/10.14778/2735479.2735485
http://arxiv.org/abs/1412.3040
http://www.springerlink.com/index/D232253353517276.pdf
http://www.springerlink.com/index/D232253353517276.pdf
https://doi.org/10.1145/1376616.1376695
https://doi.org/10.1109/TVCG.2014.2346452
https://doi.org/10.1109/TVCG.2014.2346452
https://doi.org/10.1145/1476589.1476628
https://doi.org/10.1145/1476589.1476628
https://doi.org/10.14778/2777598.2777599
https://doi.org/10.14778/2777598.2777599
http://eprints.gla.ac.uk/3223/
http://citeseer.ist.psu.edu/sarawagi00useradaptive.html
http://citeseer.ist.psu.edu/sarawagi00useradaptive.html
https://doi.org/10.1145/2514.2517

	Abstract
	1 Introduction
	2 Problem Scenario
	3 Speech Design
	3.1 Design Considerations
	3.2 Speech Syntax
	3.3 User Model
	3.4 Speech Semantics

	4 Query Evaluation and Vocalization
	4.1 Main Function
	4.2 Search Tree Operations
	4.3 Speech Evaluation via Sampling
	4.4 Extensions

	5 Experimental Evaluation
	5.1 Processing Time and Speech Quality
	5.2 Exploratory Analysis Study

	6 Related Work
	7 Conclusion
	A Formal Analysis
	A.1 Speech Properties
	A.2 Complexity Analysis

	B Additional Experiments
	B.1 Implicit Assumptions Pilot Study
	B.2 Experimental Setup
	B.3 Speech Quality Comparisons

	Acknowledgments
	References

