
Wrangler: Interactive Visual Specification
of Data Transformation Scripts

Sean Kandel∗, Andreas Paepcke∗, Joseph Hellerstein† and Jeffrey Heer∗
∗ Stanford University †University of California, Berkeley

skandel, paepcke, jheer@cs.stanford.edu hellerstein@cs.berkeley.edu

ABSTRACT
Though data analysis tools continue to improve, analysts
still expend an inordinate amount of time and effort manip-
ulating data and assessing data quality issues. Such “data
wrangling” regularly involves reformatting data values or
layout, correcting erroneous or missing values, and integrat-
ing multiple data sources. These transforms are often dif-
ficult to specify and difficult to reuse across analysis tasks,
teams, and tools. In response, we introduce Wrangler, an
interactive system for creating data transformations. Wran-
gler combines direct manipulation of visualized data with
automatic inference of relevant transforms, enabling ana-
lysts to iteratively explore the space of applicable operations
and preview their effects. Wrangler leverages semantic data
types (e.g., geographic locations, dates, classification codes)
to aid validation and type conversion. Interactive histories
support review, refinement, and annotation of transformation
scripts. User study results show that Wrangler significantly
reduces specification time and promotes the use of robust,
auditable transforms instead of manual editing.
Author Keywords
Data cleaning, programming by demonstration.
ACM Classification Keywords
H.5.2 Information Interfaces and Presentation: UI
General Terms
Human Factors

INTRODUCTION
Despite significant advances in technologies for data man-
agement and analysis, it remains time-consuming to inspect
a data set and mold it to a form that allows meaningful anal-
ysis to begin. Analysts must regularly restructure data to
make it palatable to databases, statistics packages, and vi-
sualization tools. To improve data quality, analysts must
also identify and address issues such as misspellings, miss-
ing data, unresolved duplicates, and outliers. Our own infor-
mal interviews with data analysts have found that these types
of transforms constitute the most tedious component of their
analytic process. Others estimate that data cleaning is re-
sponsible for up to 80% of the development time and cost in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CHI 2011, May 7–12, 2011, Vancouver, BC, Canada.
Copyright 2011 ACM 978-1-4503-0267-8/11/05...$10.00.

data warehousing projects [4]. Such “data wrangling” often
requires writing idiosyncratic scripts in programming lan-
guages such as Python and Perl, or extensive manual editing
using interactive tools such as Microsoft Excel. Moreover,
this hurdle discourages many people from working with data
in the first place. Sadly, when it comes to the practice of data
analysis, “the tedium is the message.”

Part of the problem is that reformatting and validating data
requires transforms that can be difficult to specify and eval-
uate. For instance, analysts often split data into meaning-
ful records and attributes—or validate fields such as dates
and addresses—using complex regular expressions that are
error-prone and tedious to interpret [2, 24]. Converting coded
values, such as mapping FIPS codes to U.S. state names,
requires integrating data from one or more external tables.
The effects of transforms that aggregate data or rearrange
data layout can be particularly hard to conceptualize ahead
of time. As data sets grow in size and complexity, discover-
ing data quality issues may be as difficult as correcting them.

Of course, transforming and cleaning a data set is only one
step in the larger data lifecycle. Data updates and evolving
schemas often necessitate the reuse and revision of transfor-
mations. Multiple analysts might use transformed data and
wish to review or refine the transformations that were previ-
ously applied; the importance of capturing data provenance
is magnified when data and scripts are shared. As a result,
we contend that the proper output of data wrangling is not
just transformed data, but an editable and auditable descrip-
tion of the data transformations applied.

This paper presents the design of Wrangler, a system for in-
teractive data transformation. We designed Wrangler to help
analysts author expressive transformations while simplify-
ing specification and minimizing manual repetition. To do
so, Wrangler couples a mixed-initiative user interface with
an underlying declarative transformation language.

With Wrangler, analysts specify transformations by build-
ing up a sequence of basic transforms. As users select data,
Wrangler suggests applicable transforms based on the cur-
rent context of interaction. Programming-by-demonstration
techniques help analysts specify complex criteria such as
regular expressions. To ensure relevance, Wrangler enu-
merates and rank-orders possible transforms using a model
that incorporates user input with the frequency, diversity,
and specification difficulty of applicable transform types. To
convey the effects of data transforms, Wrangler provides

CHI 2011 • Session: Developers & End-user Programmers May 7–12, 2011 • Vancouver, BC, Canada

3363

DataWrangler
ExportImport

Split data repeatedly on newline into
rows

Split split repeatedly on ','

Promote row 0 to header

Delete row 7

Delete empty rows

Fill row 7 by copying values from above

Fill row 7 by copying values from below

Fold using row 7 as a key

Fold Year using row 7 as a key

Transform Script

Text

Split

Cut

Columns

Fill

Drop

Rows

Delete

Fill

Promote

Table

Fold

Unfold

Clear

Year Property_crime_rate
0 Reported crime in Alabama
1

2 2004 4029.3
3 2005 3900
4 2006 3937
5 2007 3974.9
6 2008 4081.9
7

8 Reported crime in Alaska
9

10 2004 3370.9
11 2005 3615
12 2006 3582
13 2007 3373.9
14 2008 2928.3
15

16 Reported crime in Arizona
17

18 2004 5073.3
19 2005 4827
20 2006 4741.6
21 2007 4502.6
22 2008 4087.3
23

24 Reported crime in
Arkansas

25

Figure 1. The Wrangler Interface. The left panel contains (from top-to-bottom) a history of transforms, a transform selection menu, and automat-
ically suggested transforms based on the current selection. Bold text within the transform descriptions indicate parameters that can be clicked and
revised. The right panel contains an interactive data table; above each column is a data quality meter.

short natural language descriptions—which users can refine
via interactive parameters—and visual previews of transform
results. These techniques enable analysts to rapidly navigate
and assess the space of viable transforms.

As analysts transform data, their steps are recorded in a script
to facilitate reuse and provide documentation of data prove-
nance. Wrangler’s interactive history viewer supports re-
view, refinement, and annotation of these scripts. Wran-
gler’s high-level language supports a variety of runtime plat-
forms: Wrangler scripts can be run in a web browser using
JavaScript or translated into MapReduce or Python code.

We also present a controlled user study comparing Wran-
gler and Excel across a set of data wrangling tasks. We find
that Wrangler significantly reduces specification time and
promotes the use of robust transforms rather than manual
editing. Wrangler is one piece of a larger effort to address
bottlenecks in the data lifecycle by integrating insights and
methods from the HCI and database communities.

RELATED WORK
The database and machine learning communities have con-
tributed a number of algorithmic techniques for aiding data
cleaning and integration. These techniques include meth-
ods for detecting erroneous values [10, 11], information ex-
traction [1, 25], entity resolution [6], type inference [7], and
schema matching [9, 21]. In the Wrangler interface we seek
to surface such techniques in an accessible manner.

A number of commercial and research systems provide graph-
ical interfaces leveraging the above methods. Many of these
tools provide interfaces for schema matching or entity reso-
lution [3, 9, 16, 23]. Toped++ [24] is an interface for creating
Topes, objects that validate and transform data. Topes sup-
port transformations such as text formatting and lookups, but
provide little support for filtering, reshaping, or aggregation.
Bellman [5] helps users understand the structure and quality
of a database, but does not enable transformations.

Many data cleaning applications apply direct manipulation
and programming-by-demonstration (PBD) methods to spe-
cific cleaning tasks. Users of SWYN [2] build regular ex-
pressions by providing example text selections and can eval-
uate their effect in visual previews. Potluck [14] applies si-
multaneous text editing [19] to merge data sources. Karma
[26] infers text extractors and transformations for web data
from examples entered in a table. Vegemite [18] applies
PBD to integrate web data, automates the use of web ser-
vices, and generates shareable scripts. Other interfaces [15]
apply PBD to data integration via copy and paste actions.

Wrangler applies a number of these techniques: it infers reg-
ular expressions from example selections [2] and supports
mass editing [14, 19]. Wrangler uses semantic roles akin
to Topes [24] and provides natural language descriptions of
transforms [18]. However, Wrangler differs in important
ways. PBD data tools support text extraction or data integra-
tion, but lack operations such as reshaping, aggregation, and
missing value imputation. Prior tools (except for Vegemite
[18]) also do not generate scripts to document provenance.

Most closely related to Wrangler is prior work on interactive
data cleaning. Potter’s Wheel [22] provides a transformation
language for data formatting and outlier detection. Wrangler
extends the Potter’s Wheel language with key differences
discussed later. Ajax [8] also provides an interface to spec-
ify transforms, with advanced facilities for entity resolution.
Neither tool provides much support for direct manipulation:
interaction is largely restricted to menu-based commands or
entering programming statements. Google Refine [13] (for-
merly Freebase GridWorks) leverages Freebase to enable en-
tity resolution and discrepancy detection. It provides sum-
marization and filtering support through faceted histograms.
Though users can specify some commands graphically, oth-
ers must be written in a command language. Moreover, the
system assumes that input data arrives in a proper tabular
format, limiting the forms of data to which it can be applied.

CHI 2011 • Session: Developers & End-user Programmers May 7–12, 2011 • Vancouver, BC, Canada

3364

Wrangler builds on this prior work to contribute novel tech-
niques for specifying data transforms. Wrangler provides
an inference engine that generates and rank-orders suggested
transforms in response to direct manipulation of a data table.
Analysts can navigate the space of transforms by directly se-
lecting data, indicating a desired transform via menus, or by
modifying a related transform; each of these actions leads
Wrangler to further refine the set of suggestions. To help
analysts understand the effects of an operation before they
commit to it, Wrangler’s natural language transform descrip-
tions are augmented by novel transform previews that visu-
alize transform results. In concert, these techniques help an-
alysts iteratively hone in on a desired transformation.

USAGE SCENARIO
Consider an example wrangling task, using housing crime
data from the U.S. Bureau of Justice Statistics. The data
were downloaded as a CSV (comma-separated values) file,
but are not immediately usable by other tools: the data con-
tains empty lines, U.S. states are organized in disjoint ma-
trices, and the state names are embedded in other text. We
describe how an analyst can use Wrangler to transform the
data into more usable formats (Figures 1–7).

The analyst begins by pasting the text of the file into an input
box; alternatively, she could upload the file. The interface
now shows a data table (Fig. 1). To the left of the table is
a panel containing an interactive history, a transform menu,
and a transform editor. The history already contains three
transforms, as Wrangler inferred that the data was in CSV
format and so split the text into rows on newline characters,
split the rows into columns on commas, and promoted the
first row to be the table header. Note that the analyst could
undo any transform by clicking the red undo button (which
appears upon mouse-over of a transform), or could modify
transform parameters in place. In this case, she has no need.

The analyst then begins wrangling the file into a usable form.
The analyst could specify transforms explicitly by selecting
a transform type from the menu and then assigning values
to parameters; however, she instead opts to use direct ma-
nipulation along with Wrangler’s suggestion engine. First,
she clicks a row header for an empty row (7) to select it;
the transformation editor suggests possible operations in re-
sponse (Fig. 1). The first suggestion is to delete just the
selected row. The analyst can navigate the suggestions using
the keyboard up and down arrows or by mousing over the
description in the editor pane. As she navigates the sugges-
tions, Wrangler previews the effects of the transforms in the
data table. For deletions, the preview highlights the candi-
date deleted rows in red (Fig. 2). The analyst mouses over
the suggestion to delete all empty rows in the table and clicks
the green add button to execute the transform. The system
then adds the deletion operation to the history view.

The analyst would like to compare data across states, so she
now needs to extract the state names and add them to each
row of the data. She selects the text ‘Alaska’ in row 6 of the
“Year” column. Wrangler initially interprets this as select-
ing text at positions 18-24. The analyst updates Wrangler’s

DataWrangler
ExportImport

Split data repeatedly on newline into
rows

Split split repeatedly on ','

Promote row 0 to header

Delete row 7

Delete empty rows

Fill row 7 by copying values from above

Fill row 7 by copying values from below

Fold using row 7 as a key

Fold Year using row 7 as a key

Transform Script

Text

Split

Cut

Columns

Fill

Drop

Rows

Delete

Fill

Promote

Table

Fold

Unfold

Clear

Year Property_crime_rate
0 Reported crime in Alabama

2 2004 4029.3
3 2005 3900
4 2006 3937
5 2007 3974.9
6 2008 4081.9

8 Reported crime in Alaska

10 2004 3370.9
11 2005 3615
12 2006 3582
13 2007 3373.9
14 2008 2928.3

16 Reported crime in Arizona

18 2004 5073.3
19 2005 4827
20 2006 4741.6
21 2007 4502.6
22 2008 4087.3

24 Reported crime in
Arkansas

1

7

9

15

17

23

25

Figure 2. Row deletion. The analyst selects an empty row and chooses
a delete transform. Red highlights preview which rows will be deleted.
DataWrangler

ExportImport

Split data repeatedly on newline into
rows

Split split repeatedly on ','

Promote row 0 to header

Delete empty rows

Extract from Year after 'in '

Extract from Year after ' in '

Cut from Year after 'in '

Cut from Year after ' in '

Split Year after 'in '

Split Year after ' in '

Transform Script

Text

Split

Cut

Columns

Fill

Drop

Rows

Delete

Fill

Promote

Table

Fold

Unfold

Clear

Year extract Property_crime_rate
0 Reported crime in Alabama
1 2004 4029.3
2 2005 3900
3 2006 3937
4 2007 3974.9
5 2008 4081.9
6 Reported crime in Alaska
7 2004 3370.9
8 2005 3615
9 2006 3582

10 2007 3373.9
11 2008 2928.3
12 Reported crime in Arizona
13 2004 5073.3
14 2005 4827
15 2006 4741.6
16 2007 4502.6
17 2008 4087.3

18 Reported crime in
Arkansas

19 2004 4033.1
20 2005 4068
21 2006 4021.6
22 2007 3945.5
23 2008 3843.7

24 Reported crime in
California

25 2004 3423.9

Alabama

Alaska

Arizona

Arkansas

California

Figure 3. Text extraction. The analyst selects state names to extract
them into a new column. Yellow highlights show a preview of the result.
DataWrangler

ExportImport

Split data repeatedly on newline into
rows

Split split repeatedly on ','

Promote row 0 to header

Delete empty rows

Extract from Year after 'in '

Set extract's name to State

Delete rows where State is null

Fill State by copying values from above

Fill State by copying values from below

Transform Script

Text

Split

Cut

Columns

Fill

Drop

Rows

Delete

Fill

Promote

Table

Fold

Unfold

Clear

Year State Property_crime_rate
0 Reported crime in Alabama Alabama
1 2004 4029.3
2 2005 3900
3 2006 3937
4 2007 3974.9
5 2008 4081.9
6 Reported crime in Alaska Alaska
7 2004 3370.9
8 2005 3615
9 2006 3582

10 2007 3373.9
11 2008 2928.3
12 Reported crime in Arizona Arizona
13 2004 5073.3
14 2005 4827
15 2006 4741.6
16 2007 4502.6
17 2008 4087.3

18 Reported crime in
Arkansas Arkansas

19 2004 4033.1
20 2005 4068
21 2006 4021.6
22 2007 3945.5
23 2008 3843.7

24 Reported crime in
California California

25 2004 3423.9

Alabama
Alabama
Alabama
Alabama
Alabama

Alaska
Alaska
Alaska
Alaska
Alaska

Arizona
Arizona
Arizona
Arizona
Arizona

Arkansas
Arkansas
Arkansas
Arkansas
Arkansas

California

Figure 4. Filling missing values. The analyst populates empty cells
by clicking the gray bar (Fig. 3) in the data quality meter above the
“State” column, and then selecting a fill transform.
DataWrangler

ExportImport

Split data repeatedly on newline into
rows

Split split repeatedly on ','

Promote row 0 to header

Delete empty rows

Extract from Year after 'in '

Set extract's name to State

Fill State by copying values from above

Delete rows where Year starts with
'Reported'

Delete rows where Year contains
'Reported'

Extract from Year between positions 0, 8

Extract from Year on 'Reported'

Cut from Year between positions 0, 8

Cut from Year on 'Reported'

Transform Script

Text

Split

Cut

Columns

Fill

Drop

Rows

Delete

Fill

Promote

Table

Fold

Unfold

Clear

Year State Property_crime_rate

1 2004 Alabama 4029.3
2 2005 Alabama 3900
3 2006 Alabama 3937
4 2007 Alabama 3974.9
5 2008 Alabama 4081.9

7 2004 Alaska 3370.9
8 2005 Alaska 3615
9 2006 Alaska 3582

10 2007 Alaska 3373.9
11 2008 Alaska 2928.3

13 2004 Arizona 5073.3
14 2005 Arizona 4827
15 2006 Arizona 4741.6
16 2007 Arizona 4502.6
17 2008 Arizona 4087.3

19 2004 Arkansas 4033.1
20 2005 Arkansas 4068
21 2006 Arkansas 4021.6
22 2007 Arkansas 3945.5
23 2008 Arkansas 3843.7

25 2004 California 3423.9

0 Reported crime in Alabama Alabama

6 Reported crime in Alaska Alaska

12 Reported crime in Arizona Arizona

18 Reported crime in
Arkansas Arkansas

24 Reported crime in
California California

Figure 5. Deleting rows. The analyst selects text in an unwanted row
and selects a delete operation within the “Rows” menu. Red highlight-
ing previews which rows will be deleted.

inference by selecting ‘Arizona’ in the cell six rows below.
Wrangler now suggests extracting text occurring after the
string “in ” (Fig. 3). The analyst executes this transform and
renames the resulting column “State”. She notices that the
column is sparsely populated. These missing values are in-

CHI 2011 • Session: Developers & End-user Programmers May 7–12, 2011 • Vancouver, BC, Canada

3365

DataWrangler
ExportImport

Split data repeatedly on newline into
rows

Split split repeatedly on ','

Promote row 0 to header

Delete empty rows

Extract from Year after 'in '

Set extract's name to State

Fill State by copying values from above

Delete rows where Year starts with
'Reported'

Drop Year, Property_crime_rate

Fold Year, Property_crime_rate using
header as a key

Fold Year, Property_crime_rate using
row 0 as a key

Unfold Year on Property_crime_rate

Unfold Property_crime_rate on Year

Merge Year, Property_crime_rate with
glue

Transform Script

Text

Split

Cut

Columns

Fill

Drop

Rows

Delete

Fill

Promote

Table

Fold

Unfold

Clear

NextPrev

Year State Property_crime_rate
0 2004 Alabama 4029.3
1 2005 Alabama 3900
2 2006 Alabama 3937
3 2007 Alabama 3974.9
4 2008 Alabama 4081.9
5 2004 Alaska 3370.9
6 2005 Alaska 3615
7 2006 Alaska 3582
8 2007 Alaska 3373.9
9 2008 Alaska 2928.3

10 2004 Arizona 5073.3
11 2005 Arizona 4827
12 2006 Arizona 4741.6
13 2007 Arizona 4502.6
14 2008 Arizona 4087.3

State 2004 2005 2006 2007 2008
0 Alabama
1 Alaska
2 Arizona
3 Arkansas
4 California
5 Colorado
6 Connecticut
7 Delaware
8 District of Columbia
9 Florida

10 Georgia
11 Hawaii
12 Idaho
13 Illinois
14 Indiana
15 Iowa

4029.3 3900 3937 3974.9 4081.9
3370.9 3615 3582 3373.9 2928.3
5073.3 4827 4741.6 4502.6 4087.3
4033.1 4068 4021.6 3945.5 3843.7
3423.9 3321 3175.2 3032.6 2940.3
3918.5 4041 3441.8 2991.3 2856.7
2684.9 2579 2575 2470.6 2490.8
3283.6 3118 3474.5 3427.1 3594.7
4852.8 4490 4653.9 4916.3 5104.6
4182.5 4013 3986.2 4088.8 4140.6
4223.5 4145 3928.8 3893.1 3996.6
4795.5 4800 4219.9 4119.3 3566.5
2781 2697 2386.9 2264.2 2116.5
3174.1 3092 3019.6 2935.8 2932.6
3403.6 3460 3464.3 3386.5 3339.6
2904.8 2845 2870.3 2648.6 2440.5

Figure 6. Table reshaping. The analyst selects two columns, and then elects to unfold them to create a cross-tabulation. A ghosted table overlay
previews the result. Color highlights show the correspondence of data between the start and end states.

dicated by the gray bar in the data quality meter above the
column. The analyst clicks the gray bar and Wrangler sug-
gests transforms for missing values. The analyst chooses to
fill empty cells with the value from above (Fig. 4).

Looking at the “Year” column, the analyst notices a red bar
in the data quality meter indicating inconsistent data types.
Wrangler has inferred that the column primarily contains
numbers, and so has flagged non-numeric values as potential
errors. She decides to remove the rows containing the text
‘Reported’. She selects the text ‘Reported’ in row 0. Wran-
gler suggests split, extract, and cut transforms, but no delete
operations. In response, the analyst selects the Delete com-
mand from the Rows menu in the transform editor. This ac-
tion reorders the suggestions so that delete commands have
higher ranking. She finds the suggestion that deletes the un-
wanted rows (Fig. 5) and executes the transform.

At this point the analyst has wrangled the data into a proper
relational format, sufficient for export to database and vi-
sualization tools. But now suppose she would like to cre-
ate a cross-tabulation of crime rates by state and year for
subsequent graphing in Excel. She selects the “Year” and
“Property_crime_rate” columns, previews the suggested un-
fold operation (Fig. 6), then executes it to create the de-
sired cross-tab. The unfold operation creates new columns
for each unique value found in the “Year” column, and reor-
ganizes the “Property_crime_rate” values by placing each in
the appropriate cell in the resulting matrix.

The analyst’s process results in a transformation script writ-
ten in a declarative transformation language. The script pro-
vides an auditable description of the transformation enabling
later inspection, reuse, and modification. The analyst can
also annotate these transformations with her rationale. By
clicking the Export button above the transformation history,
the analyst can either save the transformed data or generate
runnable code implementing the transformation (Fig. 7).

split('data').on(NEWLINE).max_splits(NO_MAX)
split('split').on(COMMA).max_splits(NO_MAX)
columnName().row(0)
delete(isEmpty())
extract('Year').on(/.*/).after(/in /)
columnName('extract').to('State')
fill('State').method(COPY).direction(DOWN)
delete('Year starts with "Reported"')
unfold('Year').above('Property_crime_rate')

dw.wrangle()
.push(dwsplit('data').on(dw.Regex.NEWLINE).max_splits(dwsplit.NO_MAX))
.push(dwsplit('split').on(dw.Regex.TAB).max_splits(dwsplit.NO_MAX))
.push(dw.filter(dw.isEmpty()))
.push(dw.extract('Year')..on(/.*/)).after(/in /)
.push(dw.columnName('match').to('State'))
.push(dw.fill('State').method(dw.Fill.COPY).direction(dw.Fill.DOWN))
.push(dw.unfold('Year').above('Property_crime_rate'))

Figure 7. The result of a data wrangling session is a declarative data
cleaning script, shown here as generated JavaScript code. The script
encodes a step-by-step description of how to operate on input data; a
Wrangler runtime evaluates the script to produce transformed data.

DESIGN PROCESS
We based Wrangler on a transformation language with a
handful of operators. Originally we thought that each of
these operators might correspond to a single interaction with
example data in a table view. However, after considering dif-
ferent mappings and evaluating their implications, we were
unable to devise an intuitive and unambiguous mapping be-
tween simple gestures and the full expressiveness of the lan-
guage. A given interaction could imply multiple transforms
and multiple interactions might imply the same transform.

Although this many-to-many relationship between the lan-
guage and interaction might complicate our interface, we
found the relationship to be relatively sparse in practice: the
number of likely transforms for a given gesture is small. As a
result, we adopted a mixed-initiative approach [12]; instead
of mapping an interaction to a single transform, we surface
likely transforms as an ordered list of suggestions. We then
focused on rapid means for users to navigate—prune, refine,
and evaluate—these suggestions to find a desired transform.

Wrangler is a browser-based web application, written in Java-
Script. In the next section we describe the Wrangler trans-

CHI 2011 • Session: Developers & End-user Programmers May 7–12, 2011 • Vancouver, BC, Canada

3366

formation language. We then present the Wrangler interface
and its techniques for navigating suggestion space. Next, we
describe Wrangler’s mechanisms for verification. We go on
to discuss the technical details of our inference engine.

THE WRANGLER TRANSFORMATION LANGUAGE
Underlying the Wrangler interface is a declarative data trans-
formation language. Both prior work [8, 17, 22] and em-
pirical data guided the language design. As our starting
point we used the Potter’s Wheel transformation language
[22] (which in turn draws from SchemaSQL [17]). Informed
by a corpus of data sets gathered from varied sources (e.g.,
data.gov, NGOs, log files, web APIs), we then extended the
language with additional operators for common data clean-
ing tasks. These include features such as positional oper-
ators, aggregation, semantic roles, and complex reshaping
operators (e.g., using multiple key rows for cross-tabs). We
also introduced conditional mapping operators (e.g., update
country to “U.S.” where state=“California”). Language state-
ments manipulate data tables with numbered rows and named
columns of data. Wrangler treats raw text as a “degenerate”
table containing one row and one column. The language
consists of eight classes of transforms, described below.

Map transforms map one input data row to zero, one, or mul-
tiple output rows. Delete transforms (one-to-zero) accept
predicates determining which rows to remove. One-to-one
transforms include extracting, cutting, and splitting values
into multiple columns; reformatting; simple arithmetic; and
value updates. One-to-many transforms include operations
for splitting data into multiple rows, such as splitting a text
file on newlines or unnesting arrays and sets.

Lookups and joins incorporate data from external tables.
Wrangler includes extensible lookup tables to support com-
mon types of transformations, such as mapping zip codes to
state names for aggregation across states. Currently Wran-
gler supports two types of joins: equi-joins and approximate
joins using string edit distance. These joins are useful for
lookups and for correcting typos for known data types.

Reshape transforms manipulate table structure and schema.
Wrangler provides two reshaping operators: fold and unfold.
Fold collapses multiple columns to two or more columns
containing key-value sets, while an unfold creates new col-
umn headers from data values; see [22] for an extended dis-
cussion. Reshaping enables higher-order data restructuring
and is common in tools such as R and Excel Pivot Tables.

Positional transforms include fill and lag operations. Fill
operations generate values based on neighboring values in a
row or column and so depend on the sort order of the table.
For example, an analyst might fill empty cells with preceding
non-empty values. The lag operator shifts the values of a
column up or down by a specified number of rows.

The language also includes functions for sorting, aggrega-
tion (e.g., sum, min, max, mean, standard deviation), and
key generation (a.k.a., skolemization). Finally, the language
contains schema transforms to set column names, specify
column data types, and assign semantic roles.

To aid data validation and transformation, Wrangler sup-
ports standard data types (e.g., integers, numbers, strings)
and higher-level semantic roles (e.g., geographic location,
classification codes, currencies). Data types comprise stan-
dard primitives and associated parsing functions. Semantic
roles consist of additional functions for parsing and format-
ting values, plus zero or more transformation functions that
map between related roles. As an example, consider a se-
mantic role defining a zip code. The zip code role can check
that a zip code parses correctly (i.e., is a 5 digit number) and
that it is a valid zip code (checking against an external dic-
tionary of known zipcodes). The zip code role can also reg-
ister mapping functions, e.g., to return the containing state
or a central lat-lon coordinate. Wrangler leverages types and
roles for parsing, validation, and transform suggestion. The
Wrangler semantic role system is extensible, but currently
supports a limited set of common roles such as geographic
locations, government codes, currencies, and dates.

The Wrangler language design co-evolved with the interface
described in subsequent sections. We sought a consistent
mapping between the transforms shown in the interface and
statements in the language. Disconnects between the two
might cause confusion [20], particularly when analysts try to
interpret code-generated scripts. As a result, we chose to in-
troduce redundancy in the language by adding operators for
high-level actions that are commonly needed but have unin-
tuitive lower-level realizations (e.g., positional operators can
be realized using key transforms, self-joins, and scalar func-
tions). The result is a clear one-to-one mapping between
transforms presented in the interface and statements in out-
put scripts. Prior work [17, 22] proves that our basic set of
transforms is sufficient to handle all one-to-one and one-to-
many transforms. Through both our own practice and dis-
cussions with analysts, we believe our extended language is
sufficient to handle a large variety of data wrangling tasks.

THE WRANGLER INTERFACE DESIGN
The goal of the Wrangler interface is to enable analysts to
author expressive transformations with minimal difficulty and
tedium. To this aim, our interface combines direct manipula-
tion, automatic suggestion, menu-based transform selection,
and manual editing of transform parameters. This synthe-
sis of techniques enables analysts to navigate the space of
transforms using the means they find most convenient.

Both novices and experts can find it difficult to specify trans-
form parameters such as regular expressions. While direct
manipulation selections can help, inference is required to
suggest transforms without programming. To reduce this
gulf of execution [20], Wrangler uses an inference engine
that suggests data transformations based on user input, data
type or semantic role, and a number of empirically-derived
heuristics. These suggestions are intended to facilitate the
discovery and application of more complicated transforms.

However, suggested transforms (and their consequences) may
be difficult to understand. To reduce this gulf of evaluation
[20], Wrangler provides natural language descriptions and
visual transform previews. Natural language descriptions are

CHI 2011 • Session: Developers & End-user Programmers May 7–12, 2011 • Vancouver, BC, Canada

3367

intended to enhance analysts’ ability to review and refine
transformation steps. Textual annotations enable communi-
cation of analyst intent. Wrangler also couples verification
(run in the background as data is transformed) with visual-
ization to help users discover data quality issues.

Basic Interactions
The Wrangler interface supports six basic interactions within
the data table. Users can select rows, select columns, click
bars in the data quality meter, select text within a cell, edit
data values within the table (for mass editing [14, 19]), and
assign column names, data types or semantic roles. Users
can also choose transforms from the menu or refine sugges-
tions by editing transform descriptions as described below.

Automated Transformation Suggestions
As a user interacts with data, Wrangler generates a list of
suggested transforms. In some cases the set of possible sug-
gestions is large (in the hundreds), but we wish to show only
a relevant handful to avoid overload. Instead of enumerat-
ing the entire suggestion space, users can prune and reorder
the space in three ways. First, users can provide more exam-
ples to disambiguate input to the inference engine. Providing
examples is especially effective for text selections needed
for splitting, extraction, and reformatting; two or three well-
chosen examples typically suffice. Second, users can filter
the space of transforms by selecting an operator from the
transform menu. Third, users can edit a transform by alter-
ing the parameters of a transform to a desired state.

Wrangler does not immediately execute a selected sugges-
tion. Instead, Wrangler makes it the current working trans-
form. The user can edit this transform directly; as a user edits
parameters, the suggestion space updates to reflect these ed-
its. Also, a user can instead interact with the table to generate
new suggestions that use the working transform as context.

Natural Language Descriptions
To aid apprehension of suggested transforms, Wrangler gen-
erates short natural language descriptions of the transform
type and parameters. These descriptions are editable, with
parameters presented as bold hyperlinks (Fig. 8). Clicking
a link reveals an in-place editor appropriate to the parameter
(Fig. 8b). Enumerable variables (such as the direction of a
fill) are mapped to drop-down menus while free-form text
parameters are mapped to text editors with autocomplete.

We designed these descriptions to be concise; default param-
eters that are not critical to understanding may be omitted.
For example, the unless between parameter for split opera-
tions indicates regions of text to ignore while splitting. In
most cases, this parameter is left undefined and including it
would bloat the description. To edit hidden parameters, users
can click the expansion arrow to the left of the description,
revealing an editor with entries for all possible parameters.

We also sought to make parameters within descriptions read-
able by non-experts. For instance, we translate regular ex-
pressions into natural language via pattern substitution (e.g.,
(\d+) to ‘number’). This translation can make some descrip-
tions less concise but increases readability. Translation is

Figure 8. Editable Natural Language Descriptions. (a) An example of
an editable description; highlighted text indicates editable parameters.
(b) Clicking on a parameter reveals an in-place editor. (c) After editing,
the description may update to include new parameters. In this case, a
new window size parameter is displayed for the moving average.

only performed with regular expressions generated by the
Wrangler inference engine. If a user types in a custom ex-
pression, Wrangler will reflect their input.

Visual Transformation Previews
Wrangler uses visual previews to enable users to quickly
evaluate the effect of a transform. For most transforms, Wran-
gler displays these previews in the source data, and not as
a separate visualization (e.g., side-by-side before and after
views). In-place previews provide a visual economy that
serves a number of goals. First, displaying two versions of
a table inherently forces both versions to be small, which
is particularly frustrating when the differences are sparse.
Second, presenting in-place modifications draws user atten-
tion to the effect of the transformation in its original context,
without requiring a shift in focus across multiple tables. As
we discuss next, in-place previews better afford direct ma-
nipulation for users to revise the current transform.

Wrangler maps transforms to at least one of five preview
classes: selection, deletion, update, column and table. In
defining these mappings, we attempted to convey a trans-
form’s effect with minimum displacement of the original
data. This stability allows users to continue interacting with
the original data, e.g., to provide new selection examples.

Selection previews highlight relevant regions of text in all
affected cells (Fig. 3). Deletion previews color to-be-deleted
cells in red (Fig. 2). Update previews overwrite values in a
column and indicate differences with yellow highlights (Fig.
4). Column previews display new derived columns, e.g., as
results from an extract operation (Fig. 3). We show a side-
by-side display of versions when previewing fold and unfold
transforms. These alter the structure of the table to such an
extent that the best preview is to show another table (Fig.
6, 9). These table previews use color highlights to match
input data to their new locations in the output table. Some
transforms map to multiple classes; e.g., extract transforms
use both selection and column previews.

When possible, previews also indicate where the user can
modify the transform through either direct manipulation or
description refinement. Highlighting selected text or cells
works well for certain transformations. For example, by

CHI 2011 • Session: Developers & End-user Programmers May 7–12, 2011 • Vancouver, BC, Canada

3368

DataWrangler
ExportImport

Split data repeatedly on
newline into rows

Split split repeatedly on
","

Promote row 0 to header

Delete rows 0,1

Fill row 0 by copying
values from the left

Transform Script

Text

Split

Cut

Columns

Fill

Drop

Rows

Delete

Fill

Promote

Table

Fold

Unfold

Clear

split split1 split2 split3 split4
0 2004 2004 2004 2003
1 STATE Participation Rate 2004 Mean SAT I Verbal Mean SAT I Math Participation Rate 2003
2 New York 87 497 510 82
3 Connecticut 85 515 515 84
4 Massachusetts 85 518 523 82
5 New Jersey 83 501 514 85
6 New Hampshire 80 522 521 75
7 D.C. 77 489 476 77
8 Maine 76 505 501 70
9 Pennsylvania 74 501 502 73

10 Delaware 73 500 499 73
11 Georgia 73 494 493 66

split fold fold1 value
0 New York 2004 Participation Rate 2004
1 New York 2004 Mean SAT I Verbal
2 New York 2004 Mean SAT I Math
3 New York 2003 Participation Rate 2003
4 New York 2003 Mean SAT I Verbal
5 New York 2003 Mean SAT I Math
6 Connecticut 2004 Participation Rate 2004
7 Connecticut 2004 Mean SAT I Verbal
8 Connecticut 2004 Mean SAT I Math
9 Connecticut 2003 Participation Rate 2003

10 Connecticut 2003 Mean SAT I Verbal
11 Connecticut 2003 Mean SAT I Math
12 Massachusetts 2004 Participation Rate 2004

87
497
510
82
496
510
85
515
515
84
512
514
85Figure 9. Visual preview of a fold operation. For transforms that rear-

range table layout, Wrangler previews the output table and uses color
highlights to show the correspondence of values across table states.

highlighting the text selected by a regular expression in each
cell, users can determine which examples they need to fix.
For reshape transforms, Wrangler highlights the input data
in the same color as the corresponding output in the sec-
ondary table. For instance, in a fold operation, data values
that will become keys are colored to match the keys in the
output table (Fig. 9). Wrangler also highlights the param-
eters in the transform description using the same colors as
those generated in previews (Fig. 3–6). The consistent use
of colors allows users to associate clauses in a description
with their effects in the table.

Transformation Histories and Export
As successive transforms are applied, Wrangler adds their
descriptions to an interactive transformation history viewer.
Users can edit individual transform descriptions and selec-
tively enable and disable prior transforms. Upon changes,
Wrangler runs the edited script and updates the data table.
Toggling or editing a transform may result in downstream er-
rors; Wrangler highlights broken transforms in red and pro-
vides an error message to aid debugging.

Wrangler scripts also support lightweight text annotations.
Analysts can use annotations to document their rationale for
a particular transform and may help future users better un-
derstand data provenance. To annotate a transform, users can
click the edit icon next to the desired transform and write
their annotation in the resulting text editor. Users can view
an annotation by mousing over the same edit icon. These
annotations appear as comments in code-generated scripts.
Users can export both generated scripts and transformed data;
clicking the Export button in the transform history invokes
export options. Analysts can later run saved or exported
scripts on new data sources, modifying the script as needed.

TYPES, ROLES, AND VERIFICATION
It is often difficult to discover data quality issues and there-
fore difficult to address them by constructing the appropri-
ate transform. Wrangler aids discovery of data quality issues
through the use of data types and semantic roles.

As users transform data, Wrangler attempts to infer the data
type and semantic role for each column. Wrangler applies
validation functions to a sample of a column’s data to infer

these types, assigning the type that validates for over half of
the non-missing values. When multiple types satisfy this cri-
teria, Wrangler assigns the more specific one (e.g., integer is
more specific than double). Wrangler infers semantic roles
analogously. An icon in the column header indicates the se-
mantic role of the column, or the underlying data type if no
role has been assigned. Clicking the icon reveals a menu
with which users can manually assign a type or role.

Above each column is a data quality meter: a divided bar
chart that indicates the proportion of values in the column
that verify completely. Values that parse successfully are in-
dicated in green; values that match the type but do not match
the role (e.g., a 6 digit zip code) are shown in yellow; those
that do not match the type (e.g., ‘One’ does not parse as an
integer) are shown in red; and missing data are shown in
gray. Clicking a bar generates suggested transforms for that
category. For instance, clicking the missing values bar will
suggest transforms to fill in missing values or delete those
rows. Clicking the fails role bar will suggest transforms such
as a similarity join on misspelled country names.

THE WRANGLER INFERENCE ENGINE
We now present the design of the Wrangler inference engine,
which is responsible for generating a ranked list of suggested
transforms. Inputs to the engine consist of user interactions;
the current working transform; data descriptions such as col-
umn data types, semantic roles, and summary statistics; and
a corpus of historical usage statistics. Transform sugges-
tion proceeds in three phases: inferring transform parame-
ters from user interactions, generating candidate transforms
from inferred parameters, and finally ranking the results.

Usage Corpus and Transform Equivalence
To generate and rank transforms, Wrangler’s inference en-
gine relies on a corpus of usage statistics. The corpus con-
sists of frequency counts of transform descriptors and initi-
ating interactions. We built our initial corpus by wrangling
our collection of gathered data sets. The corpus updates over
time as more analysts use Wrangler.

For any given transform, we are unlikely to find an exact
match in the corpus. For instance, an analyst may perform
a fold operation over a combination of columns and rows
that does not appear in the corpus. In order to get useful
transform frequencies, we define a relaxed matching routine:
two transforms are considered equivalent in our corpus if (a)
they have an identical transform type (e.g., extract or fold)
and (b) they have equivalent parameters as defined below.

Wrangler transforms accept four basic types of parameters:
row, column or text selections and enumerables. We treat
two row selections as equivalent if they both (a) contain fil-
tering conditions (either index- or predicate-based) or (b)
match all rows in a table. Column selections are equivalent
if they refer to columns with the same data type or semantic
role. We based this rule on the observation that transforms
that operate on identical data types are more likely to be
similar. Text selections are equivalent if both (a) are index-
based selections or (b) contain regular expressions. We con-

CHI 2011 • Session: Developers & End-user Programmers May 7–12, 2011 • Vancouver, BC, Canada

3369

sider enumerable parameters equivalent only if they match
exactly. We chose these equivalency classes based on ex-
ploratory analysis of our corpus and they seem to work well
in practice. As our corpus of transforms grows with more
use, we plan to explore more principled approaches (such as
clustering) to refine our matching routines.

Inferring Parameter Sets from User Interaction
In response to user interaction, Wrangler attempts to infer
three types of transform parameters: row, column, or text
selections. For each type we enumerate possible parameter
values, resulting in a collection of inferred parameter sets.
We infer a parameter’s values independent of the other pa-
rameters. For example, we infer regular expressions for text
selection based solely on the selected text, a process other-
wise independent of which rows or columns are selected.

We infer row selections based on row indices and predicate
matching. We list predicates of the form “row is empty” and
“column [equals | starts with | ends with | contains] selected-
value”, then emit the selections that match the rows and text
currently selected in the interface. For column selections we
simply return the columns that users have interacted with.

Emitted text selections are either simple index ranges (based
directly on selections in the interface) or inferred regular ex-
pressions. To generate regular expressions, we tokenize the
text within a cell and extract both the selected text and any
surrounding text within a 5 token window. We annotate to-
kens with one or more labels of the form number, word, up-
percase word, lowercase word, or whitespace. We then enu-
merate label sequences that match the text before, within,
and after the selection range (see Fig. 10); sequences can
contain either an annotation label or the exact token text.
Next we emit all possible combinations of before, within,
and after sequences that match all current text selection ex-
amples in the interface. It is then straightforward to translate
matching label sequences into regular expressions.

Generating Suggested Transforms
After inferring parameter sets, Wrangler generates a list of
transform suggestions. For each parameter set, we loop over
each transform type in the language, emitting the types that
can accept all parameters in the set. For example, a split
transform can accept a parameter set containing a text selec-
tion, but an unfold transform can not. Wrangler instantiates
each emitted transform with parameters from the parameter
set. To determine values for missing parameters, we query
the corpus for the top-k (default 4) parameterizations that co-
occur most frequently with the provided parameter set. Dur-
ing this process we do not infer complex criteria such as row
predicates or regular expressions; we do infer enumerable
parameters, index-based row selections, and column inputs.
We then filter the suggestion set to remove “degenerate” (no-
op) transforms that would have no effect on the data.

Ranking Suggested Transforms
Wrangler then rank-orders transform suggestions according
to five criteria. The first three criteria rank transforms by
their type; the remaining two rank transforms within types.

(a) Reported crime in Alabama

(b)
before: {‘in’, ‘ ’} ‘Alabama’ → {‘Alabama’, word}
selection: {‘Alabama’} ‘in’ → {‘in’, word, lowercase}
after: ∅ ‘ ’ → {‘ ’}

(c)
before: {(‘ ’), (‘in’, ‘ ’), (word, ‘ ’), (lowercase, ‘ ’)}
selection: {(‘Alabama’), (word)}
after: ∅

(d)

{(),(‘Alabama’),()} {(),(word),()}
{(‘ ’),(),()} {(word, ‘ ’),(),()}
{(‘ ’),(‘Alabama’),()} {(word, ‘ ’),(‘Alabama’),()}
{(‘ ’),(word),()} {(word, ‘ ’),(word),()}
{(‘in’, ‘ ’),(),()} {(lowercase, ‘ ’),(),()}
{(‘in’, ‘ ’),(‘Alabama’),()} {(lowercase, ‘ ’),(‘Alabama’),()}
{(‘in’, ‘ ’),(word),()} {(lowercase, ‘ ’),(word),()}

(e) {(lowercase, ‘ ’),(‘Alabama’),()} → /[a-z]+ (Alabama)/

Figure 10. Regular Expression Inference. (a) The user selects text in a
cell. (b) We tokenize selected and surrounding text. For clarity, the fig-
ure only includes two neighboring tokens. For each token, we generate
a set of matching labels. (c) We enumerate all label sequences matching
the text. (d) We then enumerate all candidate before, selection and after
combinations. Patterns that do not uniquely match the selected text are
filtered (indicated by strike-through). (e) Finally, we construct regular
expressions for each candidate pattern.

Ensuring that transforms of the same type are adjacent helps
users compare varying parameterizations more easily.

First, we consider explicit interactions: if a user chooses a
transform from the menu or selects a current working trans-
form, we assign higher rank to transforms of that type. Sec-
ond, we consider specification difficulty. We have observed
that row and text selection predicates are harder to specify
than other parameters. We thus label row and text selections
as hard and all others as easy. We then sort transform types
according to the count of hard parameters they can accept.
Third, we rank transform types based on their corpus fre-
quency, conditioned on their initiating user interaction (e.g.,
text or column selection). In the case of text selection, we
also consider the length of the selected text. If a user selects
three or fewer characters, split transforms are ranked above
extract transforms; the opposite is true for longer selections.

We then sort transforms within type. We first sort trans-
forms by frequency of equivalent transforms in the corpus.
Second, we sort transforms in ascending order using a sim-
ple measure of transform complexity. Our goal is to prefer-
entially rank simpler transforms because users can evaluate
their descriptions more quickly. We define transform com-
plexity as the sum of complexity scores for each parameter.
The complexity of a row selection predicate is the number of
clauses it contains (e.g., “a=5 and b=6” has complexity 2).
The complexity of a regular expression is defined to be the
number of tokens (described previously) in its description.
All other parameters are given complexity scores of zero.

Finally, we attempt to surface diverse transform types in the
final suggestion list. We filter the transforms so that no type
accounts for more than 1/3 of the suggestions, unless the
transform type matches the working transform or the filter
results in fewer suggestions than can appear in the interface.

CHI 2011 • Session: Developers & End-user Programmers May 7–12, 2011 • Vancouver, BC, Canada

3370

COMPARATIVE EVALUATION WITH EXCEL
As an initial evaluation of Wrangler, we conducted a com-
parative user study with Microsoft Excel. Subjects performed
three common data cleaning tasks: value extraction, missing
value imputation, and table reshaping. Our goal was to com-
pare task completion times and observe data cleaning strate-
gies. We chose Excel because it is the most popular data ma-
nipulation tool and provides an ecologically valid baseline
for comparison: all subjects use it regularly and half self-
report as experts. Excel also supports our chosen tasks. Nei-
ther Potter’s Wheel [22] (no support for fill) nor Google Re-
fine [13] (lack of reshaping) support the full set. In contrast,
Excel includes specific tools for each task (text-to-columns,
goto-special & pivot tables) in addition to manual editing.

Participants and Methods
We recruited 12 participants, all professional analysts or grad-
uate students who regularly work with data. Subjects rated
their prior experience with Excel on a 10-point scale (1 be-
ing basic knowledge and 10 being expert); the median score
was 5. Participants had never used the Wrangler interface.

We first presented a 10 minute Wrangler tutorial describ-
ing how to create, edit, and execute transforms. We then
asked subjects to complete three tasks (described below) us-
ing both Wrangler and Excel. We randomized the presenta-
tion of tasks and tools across subjects. In each task, we asked
subjects to transform a data set into a new format, presented
to them as a picture of the final data table.

Task 1: Extract Text. In this task, we asked users to ex-
tract the number of bedrooms and housing price from hous-
ing listings on craigslist. The original data set contained one
cell for each listing, with all the information in a text string.
The target data set consisted of two columns: one for the
number of bedrooms and one for the housing price.

Task 2: Fill Missing Values. We gave users data containing
year-by-year agricultural data for three countries. Some of
the values in the data set were blank. The target data set con-
tained the same data with all missing values replaced with
the closest non-empty value from a previous year.1

Task 3: Reshape Table Structure. Users started with three
columns of housing data: year, month, and price. The target
data set contained the same data formatted as a cross-tab: the
data contained one row for each year, with the 12 months as
column headers and housing prices as cell values.

When using Excel, we allowed subjects to ask for references
to functions they could describe concretely (e.g., we would
answer “how do I split a cell?” but not “how do I get the
number of bedrooms out?”). For Wrangler tasks, we did not
respond to user inquiries. We permitted a maximum of 10
minutes per task. Each data set had at most 30 rows and 4
columns; complete manual manipulation in Excel was eas-
ily attainable within the time limits. Afterwards, each user
completed a post-study questionnaire.
1We acknowledge that this is not an ideal cleaning solution for the
data, but it nonetheless served as a useful test.

0 1 2 3 4 5 6 7 8 9 10

T1

T2

T3

User Study Task Completion Time (minutes) Wrangler Excel

Figure 11. Task completion times. Black bars indicate median values.
Median Wrangler performance is over twice as fast in all tasks.

Wrangler Accelerates Transform Specification
We performed a repeated-measures ANOVA of completion
times with task, tool, and Excel novice/expert2 as indepen-
dent factors; we log-transformed responses to better approx-
imate a normal distribution. We found a significant main
effect of tool (F1,54 = 23.65, p< 0.001), but no main effect
of task (F1,54 = 0.01, p= 0.943) or expertise (F1,54 = 0.30,
p= 0.596). We found a significant interaction effect of task
and expertise (F1,54 = 11.10, p< 0.002) driven by improved
performance by experts (regardless of tool) in the reshaping
task (T3). No other interactions were significant.

Across all tasks, median performance in Wrangler was over
twice as fast as Excel (Fig. 11). Users completed the clean-
ing tasks significantly more quickly with Wrangler than with
Excel, and this speed-up benefitted novice and expert Excel
users alike. Moreover, the user study tasks involved small
data sets amenable to manual manipulation. As data set size
grows, we expect the benefits of Wrangler to come into even
sharper relief. Of course, larger data sets might complicate
the process of assessing transform effects and so may benefit
from additional validation and visualization techniques.

Strategies for Navigating Suggestion Space
When working with Wrangler, users applied different nav-
igation strategies for different tasks. These strategies were
largely consistent across users. For text selection, users fre-
quently provided multiple examples. For other operations,
users performed an initial selection and then previewed each
suggestion. One subject noted, “I just look at the picture.”
Users with a programming background spent time reading
transform descriptions, whereas the other users relied almost
entirely on the previews. When users did not find a transform
among the initial suggestions, they most often filtered the
suggestions by selecting a transform type from the menu. If
only imperfect matches were found, users then selected the
nearest transform and edited its parameters. In other words,
users turned to manual parameterization only as a last resort.

Our post-study questionnaire asked users to rate automated
suggestions, visual previews, and direct editing of transforms
on a scale from 1 (not useful) to 5 (most useful). We per-
formed an ANOVA and found a significant difference among
the ratings (F2,33 = 17.33, p< 0.001). Users rated previews
(µ= 4.8) and suggestions (µ= 4.3) significantly more use-
ful than direct editing (µ= 2.5) (p< 0.001 in both cases by

2We divided subjects into “novices” and “experts” according to
their median self-reported expertise rating (5).

CHI 2011 • Session: Developers & End-user Programmers May 7–12, 2011 • Vancouver, BC, Canada

3371

Tukey’s HSD). Users’ preference for suggestions and pre-
views over direct editing provides evidence that these novel
user interface features have merit.

Users’ navigation strategies worked well when they under-
stood the nature of the desired transform, even if they did
not know how to specify it. However, we found that users
of both tools experienced difficulty when they lacked a con-
ceptual model of the transform. For instance, Task 3 ex-
hibited an uneven distribution of completion times; 7 of the
10 fastest times and 3 of the 4 slowest times were in Wran-
gler. Wrangler does not provide the recourse of manual edit-
ing, hence users who got stuck fared slightly better in Excel.
However, those familiar with pivot operations in Excel uni-
formly performed the task more quickly with Wrangler.

We also observed one recurring pitfall: a few users got stuck
in a “cul-de-sac” of suggestion space by incorrectly filtering
(e.g., by selecting a specific transform type from the menu).
When this happened, some users kept searching and refining
only these filtered transforms. By design, Wrangler does not
afford users the same flexibility to layout data as in Excel;
since users cannot perform arbitrary editing in Wrangler, the
recourse is less obvious when they get stuck. This pitfall was
most common in Task 3, where a user might mistakenly filter
all but fold operations when an unfold operation was needed.
One solution may be to suggest non-matching transforms re-
lated to the selected transform type, in effect treating filtering
criteria as guidelines rather than strict rules.

CONCLUSION AND FUTURE WORK
This paper introduced Wrangler, an interface and underly-
ing language for data transformation. The system provides
a mixed-initiative interface that maps user interactions to
suggested data transforms and presents natural language de-
scriptions and visual transform previews to help assess each
suggestion. With this set of techniques, we find that users
can rapidly navigate to a desired transform.

Our user study demonstrates that novice Wrangler users can
perform data cleaning tasks significantly faster than in Excel,
an effect shared across both novice and expert Excel users.
We found that users are comfortable switching navigation
strategies in Wrangler to suit a specific task, but can some-
times get stuck—in either tool—if they are unfamiliar with
the available transforms. Future work should help users form
data cleaning strategies, perhaps through improved tutorials.

Looking forward, Wrangler addresses only a subset of the
hurdles faced by data analysts. As data processing has be-
come more sophisticated, there has been little progress on
improving the tedious parts of the pipeline: data entry, data
(re)formatting, data cleaning, etc. The result is that people
with highly specialized skills (e.g., statistics, molecular bi-
ology, micro-economics) spend more time in tedious “wran-
gling” tasks than they do in exercising their specialty, while
less technical audiences such as journalists are unnecessarily
shut out. We believe that more research integrating methods
from HCI, visualization, databases, and statistics can play a
vital role in making data more accessible and informative.

ACKNOWLEDGEMENTS
The first author was supported by a Stanford Graduate Fel-
lowship. We also thank the Boeing Company, Greenplum
and Lightspeed Venture Partners for their support. This work
was partially funded by NSF Grant CCF-0963922.

REFERENCES
1. A. Arasu and H. Garcia-Molina. Extracting structured data from web

pages. In ACM SIGMOD, pages 337–348, 2003.
2. A. F. Blackwell. SWYN: A visual representation for regular

expressions. In Your Wish is my Command: Programming by
Example, pages 245–270, 2001.

3. L. Chiticariu, P. G. Kolaitis, and L. Popa. Interactive generation of
integrated schemas. In ACM SIGMOD, pages 833–846, 2008.

4. T. Dasu and T. Johnson. Exploratory Data Mining and Data Cleaning.
John Wiley & Sons, Inc., New York, NY, 2003.

5. T. Dasu, T. Johnson, S. Muthukrishnan, and V. Shkapenyuk. Mining
database structure; or, how to build a data quality browser. In ACM
SIGMOD, pages 240–251, 2002.

6. A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios. Duplicate
record detection: A survey. IEEE TKDE, 19(1):1–16, 2007.

7. K. Fisher and R. Gruber. Pads: a domain-specific language for
processing ad hoc data. In ACM PLDI, pages 295–304, 2005.

8. H. Galhardas, D. Florescu, D. Shasha, and E. Simon. Ajax: an
extensible data cleaning tool. In ACM SIGMOD, page 590, 2000.

9. L. M. Haas, M. A. Hernández, H. Ho, L. Popa, and M. Roth. Clio
grows up: from research prototype to industrial tool. In ACM
SIGMOD, pages 805–810, 2005.

10. J. M. Hellerstein. Quantitative data cleaning for large databases, 2008.
White Paper, United Nations Economic Commission for Europe.

11. V. Hodge and J. Austin. A survey of outlier detection methodologies.
Artif. Intell. Rev., 22(2):85–126, 2004.

12. E. Horvitz. Principles of mixed-initiative user interfaces. In ACM CHI,
pages 159–166, 1999.

13. D. Huynh and S. Mazzocchi. Google Refine.
http://code.google.com/p/google-refine/.

14. D. F. Huynh, R. C. Miller, and D. R. Karger. Potluck: semi-ontology
alignment for casual users. In ISWC, pages 903–910, 2007.

15. Z. G. Ives, C. A. Knoblock, S. Minton, M. Jacob, P. Pratim, T. R.
Tuchinda, J. Luis, A. Maria, and M. C. Gazen. Interactive data
integration through smart copy & paste. In CIDR, 2009.

16. H. Kang, L. Getoor, B. Shneiderman, M. Bilgic, and L. Licamele.
Interactive entity resolution in relational data: A visual analytic tool
and its evaluation. IEEE TVCG, 14(5):999–1014, 2008.

17. L. V. S. Lakshmanan, F. Sadri, and S. N. Subramanian. SchemaSQL:
An extension to SQL for multidatabase interoperability. ACM Trans.
Database Syst., 26(4):476–519, 2001.

18. J. Lin, J. Wong, J. Nichols, A. Cypher, and T. A. Lau. End-user
programming of mashups with vegemite. In IUI, pages 97–106, 2009.

19. R. C. Miller and B. A. Myers. Interactive simultaneous editing of
multiple text regions. In USENIX Tech. Conf., pages 161–174, 2001.

20. D. A. Norman. The Design of Everyday Things. Basic Books, 2002.
21. E. Rahm and P. A. Bernstein. A survey of approaches to automatic

schema matching. The VLDB Journal, 10:334–350, 2001.
22. V. Raman and J. M. Hellerstein. Potter’s wheel: An interactive data

cleaning system. In VLDB, pages 381–390, 2001.
23. G. G. Robertson, M. P. Czerwinski, and J. E. Churchill. Visualization

of mappings between schemas. In ACM CHI, pages 431–439, 2005.
24. C. Scaffidi, B. Myers, and M. Shaw. Intelligently creating and

recommending reusable reformatting rules. In ACM IUI, pages
297–306, 2009.

25. S. Soderland. Learning information extraction rules for
semi-structured and free text. Mach. Learn., 34(1-3):233–272, 1999.

26. R. Tuchinda, P. Szekely, and C. A. Knoblock. Building mashups by
example. In ACM IUI, pages 139–148, 2008.

CHI 2011 • Session: Developers & End-user Programmers May 7–12, 2011 • Vancouver, BC, Canada

3372

http://code.google.com/p/google-refine/

	Introduction
	Related Work
	Usage Scenario
	Design Process
	The Wrangler Transformation Language
	The Wrangler Interface Design
	Basic Interactions
	Automated Transformation Suggestions
	Natural Language Descriptions
	Visual Transformation Previews
	Transformation Histories and Export

	Types, Roles, and Verification
	The Wrangler Inference Engine
	Usage Corpus and Transform Equivalence
	Inferring Parameter Sets from User Interaction
	Generating Suggested Transforms
	Ranking Suggested Transforms

	Comparative Evaluation with Excel
	Participants and Methods
	Wrangler Accelerates Transform Specification
	Strategies for Navigating Suggestion Space

	Conclusion and Future Work
	Acknowledgements
	REFERENCES

