INFO 290T Human-Centered Data Management

A Brief Data-Centric Visualization Primer

Slide Credits to Jeff Heer & Arvind Satyanarayanan & Tamara Munzner

Resources: Tamara Munzner's Book:Visualization Analysis and Design

Why Visualizations?

- Analyze (aka exploration)
 - Discover trends
 - Stock price is going up/down
 - Develop & check hypotheses
 - House prices are down due to the downturn
 - Detect errors
 - Null values in a column

• Share, record, communicate & collaborate (aka explanation)

Why Not Statistics?

Anscombe's Quartet

Identical statistics

x mean	9
x variance	10
y mean	7.5
y variance	3.75
x/y correlation	0.816

Visualizations $\leftarrow \rightarrow$ SQL Queries

Most visualizations are group-by queries

SELECT AGG(M), D FROM R WHERE ... GROUP BY D

SELECT COUNT(*), Color FROM R GROUP BY Color

Types of Data: The Data Processing Viewpoint

Dimensions

- Independent variables
- Usually discrete, e.g., categories, dates, bins
- Can include numeric data, but usually doesn't make sense to aggregate
- Usually the GROUP BY columns in a SQL query

Measures

- Dependent variables (a function of one or more dimension vars)
- Usually continuous can be analyzed and aggregated
- These are aggregated columns in a GROUP BY query

Dimensions/Measures?

US Census Data

- People Count
- Year
- Age
- Marital Status
- Sex

	А	В	С	D	E
1	year	age	marst	sex	people
2	1850	0	0	1	1483789
3	1850	0	0	2	1450376
4	1850	5	0	1	1411067
5	1850	5	0	2	1359668
6	1850	10	0	1	1260099
7	1850	10	0	2	1216114
8	1850	15	0	1	1077133
9	1850	15	0	2	1110619
10	1850	20	0	1	1017281
11	1850	20	0	2	1003841
12	1850	25	0	1	862547
13	1850	25	0	2	799482
14	1850	30	0	1	730638
15	1850	30	0	2	639636
16	1850	35	0	1	588487
17	1850	35	0	2	505012
18	1850	40	0	1	475911
19	1850	40	0	2	428185
20	1850	45	0	1	384211
21	1850	45	0	2	341254
22	1050	50	0	4	221242

Dimensions/Measures?

US Census Data

- People Count: Measure
- Year: Dimension
- Age: Dimension (could vary in general!)
- Marital Status: Dimension
- Sex: Dimension

		А	В	С	D	E
	1	year	age	marst	sex	people
	2	1850	0	0	1	1483789
	3	1850	0	0	2	1450376
	4	1850	5	0	1	1411067
	5	1850	5	0	2	1359668
	6	1850	10	0	1	1260099
	7	1850	10	0	2	1216114
	8	1850	15	0	1	1077133
	9	1850	15	0	2	1110619
	10	1850	20	0	1	1017281
	11	1850	20	0	2	1003841
)	12	1850	25	0	1	862547
	13	1850	25	0	2	799482
	14	1850	30	0	1	730638
	15	1850	30	0	2	639636
	16	1850	35	0	1	588487
	17	1850	35	0	2	505012
	18	1850	40	0	1	475911
	19	1850	40	0	2	428185
	20	1850	45	0	1	384211
	21	1850	45	0	2	341254
	22	1050	50	0	4	201242

Types of Data: The Visualization Viewpoint

Nominal

• =, ≠

- Ordinal
 - =, *≠*, <, >
- Quantitative Interval
 - =, ≠, <, >, −
 - Arbitrary zero
- Quantitative Ratio
 - =, ≠, <, >, -, %
 - Physical quantities

Airlines, Genre

Film ratings, Batteries

Year, Location

Sales, Profit, Temperature

Types of Data: The Visualization Viewpoint

Nominal

- Ordinal
 - =, ≠, <, >
- Quantitative Interval
 - =, ≠, <, >, −
 - Arbitrary zero
- Quantitative Ratio
 - =, ≠, <, >, -, %
 - Physical quantities

Hot, cold

Temperature

Good, OK, Bad

Grade

Score

N/O/QI/QR?

Order ID

Order Date

Order Priority

Product Container

Product Base Margin Ship Date

A	В	С	S	Т	U
Order ID	Order Date	Order Priority	Product Container	Product Base Margin	Ship Date
3	10/14/06	5-Low	Large Box	0.8	10/21/06
6	2/21/08	4-Not Specified	Small Pack	0.55	2/22/08
32	7/16/07	2-High	Small Pack	0.79	7/17/07
32	7/16/07	2-High	Jumbo Box	0.72	7/17/07
32	7/16/07	2-High	Medium Box	0.6	7/18/07
32	7/16/07	2-High	Medium Box	0.65	7/18/07
35	10/23/07	4-Not Specified	Wrap Bag	0.52	10/24/07
35	10/23/07	4-Not Specified	Small Box	0.58	10/25/07
36	11/3/07	1-Urgent	Small Box	0.55	11/3/07
65	3/18/07	1-Urgent	Small Pack	0.49	3/19/07
66	1/20/05	5-Low	Wrap Bag	0.56	1/20/05
69	6/4/05	4-Not Specified	Small Pack	0.44	6/6/05
69	6/4/05	4-Not Specified	Wrap Bag	0.6	6/6/05
70	12/18/06	5-Low	Small Box	0.59	12/23/06
70	12/18/06	5-Low	Wrap Bag	0.82	12/23/06
96	4/17/05	2-High	Small Box	0.55	4/19/05
97	1/29/06	3-Medium	Small Box	0.38	1/30/06
129	11/19/08	5-Low	Small Box	0.37	11/28/08
130	5/8/08	2-High	Small Box	0.37	5/9/08
130	5/8/08	2-High	Medium Box	0.38	5/10/08
130	5/8/08	2-High	Small Box	0.6	5/11/08
132	6/11/06	3-Medium	Medium Box	0.6	6/12/06
132	6/11/06	3-Medium	Jumbo Box	0.69	6/14/06
134	5/1/08	4-Not Specified	Large Box	0.82	5/3/08
135	10/21/07	4-Not Specified	Small Pack	0.64	10/23/07
166	9/12/07	2-High	Small Box	0.55	9/14/07
193	8/8/06	1-Urgent	Medium Box	0.57	8/10/06
194	4/5/08	3-Medium	Wrap Bag	0.42	4/7/08

N/O/QI/QR?

Order ID: N / O Order Date: QI Order Priority: O

Product Container: O

Product Base Margin: QR Ship Date: QI

A	В	С	S	Т	U
Order ID	Order Date	Order Priority	Product Container	Product Base Margin	Ship Date
3	10/14/06	5-Low	Large Box	0.8	10/21/06
6	2/21/08	4-Not Specified	Small Pack	0.55	2/22/08
32	7/16/07	2-High	Small Pack	0.79	7/17/07
32	7/16/07	2-High	Jumbo Box	0.72	7/17/07
32	7/16/07	2-High	Medium Box	0.6	7/18/07
32	7/16/07	2-High	Medium Box	0.65	7/18/07
35	10/23/07	4-Not Specified	Wrap Bag	0.52	10/24/07
35	10/23/07	4-Not Specified	Small Box	0.58	10/25/07
36	11/3/07	1-Urgent	Small Box	0.55	11/3/07
65	3/18/07	1-Urgent	Small Pack	0.49	3/19/07
66	1/20/05	5-Low	Wrap Bag	0.56	1/20/05
69	6/4/05	4-Not Specified	Small Pack	0.44	6/6/05
69	6/4/05	4-Not Specified	Wrap Bag	0.6	6/6/05
70	12/18/06	5-Low	Small Box	0.59	12/23/06
70	12/18/06	5-Low	Wrap Bag	0.82	12/23/06
96	4/17/05	2-High	Small Box	0.55	4/19/05
97	1/29/06	3-Medium	Small Box	0.38	1/30/06
129	11/19/08	5-Low	Small Box	0.37	11/28/08
130	5/8/08	2-High	Small Box	0.37	5/9/08
130	5/8/08	2-High	Medium Box	0.38	5/10/08
130	5/8/08	2-High	Small Box	0.6	5/11/08
132	6/11/06	3-Medium	Medium Box	0.6	6/12/06
132	6/11/06	3-Medium	Jumbo Box	0.69	6/14/06
134	5/1/08	4-Not Specified	Large Box	0.82	5/3/08
135	10/21/07	4-Not Specified	Small Pack	0.64	10/23/07
166	9/12/07	2-High	Small Box	0.55	9/14/07
193	8/8/06	1-Urgent	Medium Box	0.57	8/10/06
194	4/5/08	3-Medium	Wrap Bag	0.42	4/7/08

A Very Quick Primer on Visualization Types

The most basic visualization is a table!

- Bar Charts
- Line Charts
- Scatter Plot
- Choropleth

When are bar charts appropriate?

- When plotting a Q-R vs. either an N, O, Q-I, or Q-R
- Emphasizes the differences in height than differences in X axis
- Most fundamental chart
- From a SQL standpoint, simple aggregation of some Y axis measure, grouped by one or more dimensions
 - can generate results in the appropriate order in the X axis by doing an ORDER BY following the GROUP BY

Line Charts

When are line charts appropriate?

- When plotting a Q-R vs. a Q-I or a Q-R
- Mainly makes sense when the X axis is ordered in some way and distances between X axis points matter
 - e.g., is the rate of change in this interval the same as the other interval
- Want to be able to see "trends"
 - There is an assumption of interpolation between points and dependence of the Y-axis on the X-axis
- From a SQL standpoint, the query for generation is similar to bar charts, grouping by the X-axis

When are scatterplots appropriate?

- When plotting a Q-R vs. a Q-R
- No assumption of interpolation unlike line charts
- Care more about "density", understanding of "correlation"
- From a SQL query standpoint, one way to plot a scatterplot is to simply perform a SELECT X,Y FROM R with no grouping.
 - Additional aspects (e.g., color) can also be selected if needed
- However, there is a danger of too many rows being returned.
 - Imagine a relation of size IB: IB pairs returned
 - A safer option in that case is to bin the scatterplot into grid cells
 - Q: How would we do this in SQL?
 - A: CTE to add new "binned" columns corresponding to a CASE statement, followed by a GROUP BY on the new columns

Choropleths

When are choropleths appropriate?

- Choropleths map a Q-R vs. a two-dimensional Q-I variable
- From a SQL query standpoint, grouping can be done on a pergeographical region basis followed by overlaying on a map.

What type of visualization would you use?

- A plot of rainfall by location on a map
- A plot of average age by department
- A plot of total sales by year
- A plot of rainfall by temperature

We just ...

- Saw a bunch of primitive visualization types & relationships to SQL
- But there are lots more variants!

- We need a way to think about visualization types more formally
- And compare between them
- Enter visual encodings!

25

From Data to Visual Encodings

- Given a dataset, we apply a mapping or visual encoding to transform it into a visualization
- As part of this visual encoding, we select:
 - Marks: basic items / geometric primitives
 - Channels: visual aspects that change appearance of marks based on values
- This visual encoding process allows us to reason about a variety of visualization types, and compose them "from the bottom up"

Marks

Basic Geometric Elements

Channels

- control appearance of marks
 - proportional to or based on attributes
- many names

•

- visual channels
- visual variables
- retinal channels
- visual dimensions

Visual Encodings Example

•

1:2:3:4:QR: vertical positionQR: vertical positionQR: vertical positionQR:N: horizontal positionQR: horizontal positionQR: horizontal positionQR:N: color hueN: colorN: colorN: color

QR: vertical position QR: horizontal position N: color hue QR: size (area)

mark: line

mark: point

mark: point

mark: point

Constraints on Marks \rightarrow Channels

• Marks have dimensions, so dimensions impose constraints

- constraint view: mark type constrains what else can be encoded
 - points: 0 constraints on size, can encode more attributes w/ size & shape
 - lines: I constraint on size (length), can still encode size other way (width)
 - interlocking areas: 2 constraints on size (length/width), cannot code for size or shape

When to use which channel

• Expressiveness

• Match channel type to data type

- Effectiveness
 - Some channels are better than others

Nominal Attributes

Effectiveness Decreases

Expressiveness principle: Don't use Shape to encode a Quantitative attribute!

32

Ordinal/Quantitative Attributes

Effectiveness Decreases

Expressiveness principle: Don't use Area to encode a Nominal attribute! (imposing an order on something that isn't ordered)

33

Visualization Tools

- Many good visualization packages: these help you generate a visualization on your data from within a programming language
 - Matplotlib
 - Plotly
 - D3/Vega/Vega-lite
 - ggplot2
 - Gnuplot
- Usually, compose visualizations "bottom up", starting from the marks, assigning attributes to channels, etc.
- Plus visual analytics tools: these are tools that provide an interactive environment to explore your data visually without writing code
 - Looker
 - PowerBl
 - Spotfire
 - Tableau \leftarrow This is the focus of the paper you'll be reading!
- Here, the visual encoding is a bit more automatic, but with users able to override

Takeaways

- Visualization is an essential means for data exploration hypothesis generation and confirmation, spotting of outliers and trends, among others.
- Data types dictate how the data should be visualized
- A lot can be accomplished with a small number of visualization types: often these suffice during data exploration
- Visual encodings provide a useful way to compose visualizations from the ground up
- Visual analytics tools provide interactive visualization capabilities via simple interactions

