
INFO 290T
Human-Centered Data Management

1

A Primer on Scalability & 
Performance



Announcements

• Project proposal due on the 19th

• Plenty of auxiliary slots for next week, feel free to sign up

2



A Primer on Scalability & Performance

We know that there’s low-level data processing operations that are expensive:
• Sorting
• Joins
• Grouping/aggregation
• …

And also higher level: ML/AI, data extraction, cleaning, transformation, visualization, …

Sometimes hard to avoid these sorts of operations, but people demand low latencies. 

Even 500ms latencies leads to less hypotheses explored/insights generated [Liu and Heer 2014]

3



A Primer on Scalability & Performance

• Stuff you can do to improve performance 
• Aka read less data or do less processing, or both
• You should already know at least some of these techniques
• Meant primarily as a recap

• Indexes
• Materialization
• Columnar Representation
• Compression
• Prefetching
• Approximation
• Parallelism
• Multi-Query Optimization
• Returning Early

4



Indexes

• Many types: B+Tree, Hash, …
• Auxiliary structure that lets you “skip ahead” to data of interest
• Don’t actually change how the data is organized
• Only really helps when you’re reading a small portion of the data
• Or if your data is organized (sorted) according to the same indexing 

attribute(s)

• Drawbacks: 
• Have to update your index when the data changes

5



Materialized Views

• Precomputed results of certain queries stored separately
• Doesn’t actually change how the raw data is stored
• If the same query is issued repeatedly, materialization gets you the result “for free”
• Otherwise, additional computation required to produce results using views

• E.g., total sales from the materialized view of sales by region

• Drawbacks:
• Have to update your index when the data changes

6



Columnar Representation & Compression

• Traditional databases store data as rows, one row after the other
• Most “analytical” queries read a subset of columns rather than all the 

columns
• Why not store columns individually and read them as needed?
• O(columns read) rather than O(total columns)

• Plus, if you’re storing as a column, you can compress better
• Drawbacks:
• Doesn’t work as well with mixed (read/write) workloads
• Decompression may be costly

7



Prefetching

• Predicting what the user will need next, and retrieving it or 
computing it preemptively
• Requires a model of user behavior
• Drawbacks
• May lead to unnecessary computation/IO if the prediction is inaccurate

8



Approximation

• Read not all of your data, but a sample of it
• Can be a pre-materialized/offline sample 
• If you store it based on some “bucketing” scheme, e.g., 100 tuples per state, 

then it is known as stratified sample
• Or computed on the fly: online
• Drawbacks
• Results are approximate
• Pre-materialized samples need to be updated
• Online samples, if truly random, may be very expensive to draw (random 

accesses)
• Or require the data to be randomly sorted

9



Parallelism

• Run things in parallel!
• Most analytical queries are embarrassingly parallel
• Thinking computing aggregates on partitions, then aggregating the aggregates

• Most database systems already automatically do this for you
• Drawbacks:
• More parallelism for a single user query means less for others
• Diminishing returns beyond a point

10



Multi-Query Optimization

• Group work together
• Again, database systems will do some of this for you, but most are 

not smart enough to do so
• Drawbacks:
• Figuring out how to do this is not straightforward
• Sometimes need to post-process results
• May need to hold back a query’s execution to time it with another one

11



Returning Results Early

• Sometimes you don’t need to do all of the processing to provide 
enough results for the user to decide on the next step
• E.g., returning the first-k tuples, or doing enough work until you know the 

results are not going to change much visually

• Drawbacks
• Not applicable to all settings

12


