INFO 290T Human-Centered Data Management Paper Author Role: Qetch

Announcements

- Still a few accessory roles for next week available!
- Remember: you need 5+ credits, including one presenter role
- OH today to talk about projects!

Expressive Time Series Querying with Hand-Drawn Scale-Free Sketches

Miro Mannino, Azza Abouzeid CHI 2018 Best Paper Award

Time Series Visualizations are Important

- Occur everywhere
 - Health data, sensors, financial data
- A special case of line charts

Querying = Pattern Matching is a Key Activity

Often want to find patterns in one or more time series Significant financial or health implications, among others ...

But... How do I Query for Patterns?

- Existing visualization tools (Tableau, ...) provide no ways for users to search for specific patterns
 - Onus is on the user to manually sift through the time series for potential matches
- The most natural approach is for the user to simply sketch what they are looking for and the system to find matches...
 - Prior work doesn't support sketch enough to make sketch-based querying practical

Prior Work

- Sketch-less querying
 - E.g., timeboxes (timesearcher)
 - User draws constrain boxes
 - Value-based constraints, not shape
- Constrained sketching
 - Using the same sketching canvas as the data
 - User must match the scale and shape exactly
 - Sketches or constraints thereof must conform to a specific shape
 - e.g., lines

to search for slooks, allow on the plach above

Figure 1: Query in progress. Heavy line is the user's query, light line displays aggregate data for reference.

OK, so let's support "free-range sketching"!

- But we don't actually know how people sketch time series!
 - What features they pay attention to
 - How faithfully they reproduce these features
 - How often they make mistakes
- "... most humans are not faithful artists ..." [Eitz et al., 2012]

"... Instead people use shared, iconic representations of objects or they make dramatic simplifications or exaggerations..."

• So let's do a study to understand how people sketch time series!

How do people sketch?

Crowdsourced study: 150 crowd workers

Asked to reproduce a fragment of a time series (without tracing)

Key Findings:

- Visual features are preserved
- Non-uniform global scaling [not all components stretched/squished the same amount]
- Local distortions [humans often exaggerate some features]

Time Series Distance Measures

- Given our study findings, especially the non-global scaling, and local distortions, how do we identify matches to a query?
- Prior work on time series matching
 - Euclidean distance
 - Point-by-point matching
 - Dynamic Time Warping
 - Stretches/Squishes ranges of values to allow for more flexible matches
- However, both are for matching time series against each other, not for a hand-drawn sketch to a time series

So How Do We Match?

Three steps:

- Support a variety of "smoothings"
 - Raw \rightarrow Smooth
 - Allows for emphasis of local vs. global trends
- Per smoothing, select a match candidate
- Per smoothing, per match candidate, compute the distance

So How Do We Match? II

Selecting a match candidate

- Segment query & TS into portions of +/- slope (segments)
 - Ignore small local variations [merge with neighboring segments]
- If there are k segments in query, consider each contiguous k in TS

Demo Video!

https://www.dropbox.com/s/h3njwcb0gsn0jti/qetch%205min.mp4?dl=0

Other Features

- Regex
 - Operators:
 - Repeat (avoid having to specify unknown repetitions, or draw many times),
 - Not (find anomalies)
 - Concat
 - Each segment in the sketch represents a state
 - All possible transitions are explored as long as the matches can be extended

- Simultaneous match on multiple timeseries
 - Qetch uses relative positioning to define temporal constraints between sketches across time aligned data sets

Evaluation: Interaction Features

- User study on multiple tasks
- Tasks that require repetition, not operator, or multi-time series querying are easier with those features
- (Aditya note: duh!)

Evaluation: Targeted Search

- Accuracy evaluation of Qetch's algorithm
 - Uses the crowdsourced dataset, where workers draw a ref region

Queries	\sim	\sim	\sim	\cup	M		_lh	γ
Sketch Samples	\mathcal{M}	\sim	\sim	\bigvee	Mm	MMM	M	\sim
Typical sketches preserve key perceptual features but have local distortions.	\mathcal{M}	\mathbb{W}			Mm	MM	M	
DTW ranks the reference region at 16+ and Qetch ranks it within 1-15	\mathcal{M}	Ŵ			MMM	MMm	M	
DTW ranks the reference region within 1-15 and Qetch ranks it at 16+	M	\sim	$\sqrt{-}$	\bigvee	MM	MMU	Mh	

- Counted how often each algorithm placed this reference region in its top 5 results
 - Qetch outperforms DTW in 5 data sets out of 8
 - Qetch outperforms ED in 6 data sets out of 8
- But, DTW and ED require query length

Evaluation: Exploratory Search

- User study on exploring Qetch
 - Asked users to draw 2 queries and three queries of their choice
 - Asked to rank the top 10 results of both DTW and Qetch
- Qetch outperforms DTW across all queries

Conclusions

- Prior matching algorithms not designed for sketch matching for humans
- Querying time series with human sketches is challenging
- Qetch = a tool and algorithm free-range sketch-based querying
 - Distance measure outperforms DTW and ED in many scenarios
 - No need to specify query length, no constraints in sketching
 - Regular expression and multiple matches help typical cases

Discussion

- What did you all think of the paper?
 - Key contributions
 - Evaluation
 - Writing
 - Interface
 - Adoption

Discussion: Query Completeness

- Operators: Not, Repeat
- Is the range of expressiveness sufficient?
- What else might be useful to add to the mix?

Discussion: Evaluation

- Multiple experiments = great!
- How could the evaluation be improved?
- Thoughts:
 - Experiments done on synthetic datasets --> ecological validity
 - Crowd worker study had no "skin in the game"
 - Real world use cases?
 - Within/Between subjects issues

Discussion: Adoption and Usability

- Do you think the system is easy to adopt?
- How would it fit into current workflows?

Discussion: Informal Archaeology

- Paper that this builds on:
 - Martin Wattenberg: Sketching a graph to query a time series database, 2001
 - First paper that uses "sketching" for querying
- Paper that builds on this paper:
 - ShapeSearch: A Flexible and Efficient System for Shape-based Exploration of Trendlines, 2020 [SIGMOD Best paper]
 - Expanded regex
 - Natural language -> Regex

