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Latency is frustrating, specially during data 
exploration.

1.
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Interactive visualization systems are crucial for effective 
data exploration and analysis. 

Interactivity means offering rapid response times for 
user operations. More crucial for latency sensitive 

operations like selecting, brushing and linking. 

Delayed responses might cause a hindrance in the user’s 
perception of a cause-and-effect relationship.



Chandramita Dutta | Info 290

Why is it important to solve this problem? 

Improve user engagement - to retain a user’s attention and encourage them to 
explore the data. 

Reduce selection bias in analysts - they might gravitate to "convenient" and 
familiar datasets, as delays in exploring large datasets can be frustrating.

Enable “cold-start” analytics - reduce friction of using new data and avoiding 
time consuming precomputation

Scale and complexity of data is increasing - more emphasis on effective 
exploration.
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Research Question

"How can we design a system for interactive data 
exploration and visualization that provides low-latency 
interactions, even for very large datasets, without the 
need for time-consuming precomputation”
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Important concepts in this space
● Binned Aggregates - summarize data by dividing it into bins and aggregating 

records within each bin

● Scalable Visual Analysis Systems - either client-only or client-server architectures, 
depending on dataset size and complexity. 

● Scalable Data Processing for Visualization - three main approaches: parallel 
evaluation, indexing, and approximation.

● Indexing -  to precompute aggregates along specific dimensions, significantly 
speeding up query evaluation. 

● Approximation - to estimate result values and their uncertainty using a data 
sample.

● Prefetching - predict likely queries and precompute and cache results. 
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Challenges with Prior Approaches
● Limited interactivity: Traditionally, the different stages of the data processing 

pipeline have been optimized as independent modules. Yet, interactivity is still 
difficult to achieve due to factors outside the scope of database optimizations, 
such as network latency.

● Scalability problems: Indexing and data cube approaches, used to handle large 
datasets in real-time can be efficient but may have lengthy index-building 
times, especially for datasets with billions of records.

● Data Cube Limitations: Data cube-based approaches, like imMens, can support 
real-time brushing and linking but may limit interactions to a single brush. 
Additionally, they often snap brushes to visible bins, limiting flexibility in zoom 
levels.

● Approximation Limitations: Approximate query processing systems, while 
useful for exploratory analysis, may not support interactive brushing and linking, 
which are crucial for visual exploration.

● Prefetching Challenges: Predictive prefetching approaches need to anticipate 
user queries accurately, which can be challenging in practice
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What is new?
Falcon optimizes the interface and query systems 
together. The allocation of compute resources is 
prioritized to interactions for which users are more 
latency-sensitive: 
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How?

 every query as an 
independent request

optimize a user’s session 
with client-side state

active view

raw dataBrushing interactions

latency for brushing prefetching and 
indexing techniques



The Interface
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Flights dataset:180 million records



Interface: key components 
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Charts for Zero/One/Two-Dimensional Data - views 
show aggregates grouped by zero, one or two binned 
dimensions. 

Zero dimensional data - record 
count hor/vert bar or text view

One dimensional data - bar charts two dimensional data - size/color
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Brushing in the Active View

Falcon uses an index, a compact summary 
that contains the details needed to update 
passive views for any possible brush in the 
active view. 

Rapid brush updates are decoupled from full 
dataset. 

Active view

Passive view
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Switching Active Views

To draw a new brush, a new index is created, 
replacing the previous.
New index is conditioned on previous view, 
meaning counts must be filtered according 
to the selected ranges

After a view switch the distance 
histogram is active, and the user 
can draw a brush there.

Active view 1

Active view 2
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Zooming the Active View

Since scale changes require no new data, 
there are no delays.
When the zoom interaction ends, Falcon 
computes a new bin width and offset. 

You can zoom histograms. Falcon 
automatically re-bins the data.
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Prefetching

● Falcon doesn't wait for the first interaction with a new active view 
to create a new index.

● Falcon can prefetch indexes before a user starts brushing.
● Predictive Prefetching - Falcon can predict user actions, such as 

hovering over a view before drawing a new brush.
● Mouse hover is a strong indicator of user attention.
● Falcon utilizes long idle times between interactions to 

precompute additional indexes.
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Prefetching - example
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Demo

https://vega.github.io/falcon/flights/ 

https://vega.github.io/falcon/flights/
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How Falcon Implemented the 
described interactions?
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Index of Data Tiles

● Falcon uses an index known as a 
"Data Tile" 

● The data for binned aggregate 
views is stored in ndarrays

● Histogram that is p pixels wide 
-> has p^2 distinct brushes -> 
p^2 cube slices to be stored for 
each passive view

● Falcon encodes these p^2 slices 
as p cumulative slices and 
stores these cumulative counts 
in a single multidimensional 
array - Data Tile

● Data tiles -> cumulative cube 
slices - computed in constant 
time (O(1))
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Computing  Data Tiles
Two Query Systems to compute data tiles efficiently

In-Browser Engine - queries over tens of millions of records

● The browser engine creates an empty multidimensional array for 
binned dimensions.

● It counts records within each array cell from filtered data and 
computes cumulative sums along active view dimensions.

● It also tracks unfiltered counts for records outside the active view.
● Its performance depends on the number of bins in active and passive 

dimensions.
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Database Server Engine

● The database engine issues queries 
that perform binning and 
aggregation in a scalable database 
system, such as OmniSci Core

● Falcon generates aggregate 
queries that filter by the brushes in 
the other passive views and group 
by the bins in the dimensions of 
the active and passive views

● Query results are received 
client-side and written into a 
multidimensional array.

● It also tracks unfiltered counts for 
records outside the active view.
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Progressive Interaction

Along with brushing, switching active dimensions, and zooming are core user interactions in 
Falcon.

Progressive Interaction helps reduce latency in these interactions.

Steps:
● Works by initially loading small data tiles with lower bin counts than pixel counts in the 

active view.
● Allows users to interact with the active view, but brushes snap to the closest datatile bin 

boundaries.
● Loads the full pixel resolution in the background (more granularity)
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Enhancing Brushing with Interpolation
● Brushes snapping to the closest bins can limit precision.

To enable brushing at pixel resolution with low-resolution data, Falcon offers interpolation

● In Progressive Interaction, Falcon starts with low-resolution data.
● Approximates brushing at pixel resolution using interpolation.
● Interpolates between bin counts at the closest bin boundaries to current brush ends.
● Interpolated bin counts enable precise brush placement, enhancing user experience.
● Users can place multiple brushes without waiting for full resolution data to load.
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Benchmark Evaluations
- Falcon Vs. Square's Cross-filter and imMens



Chandramita Dutta | Info 290

Falcon outperforms Square's 
Cross-filter in brushing 
performance, maintaining more 
than 50 frames per second for 
passive view updates.

Brushing Performance
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● Wasserstein metric (Earth 
Mover's Distance) was used to 
measure the interpolation error 
for pixel-level brushing with 
low-resolution data tiles

● Majority of Cases: Small errors 
(<< 0.01).

● Error is largest (> 0.04) for highly 
selective filters (< 0.2%) since bin 
counts with few records are more 
susceptible to noise, and the 
Wasserstein metric compares 
two distributions.

Interpolation Accuracy of Brushes
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View Indexing Cost

Falcon was tested on three datasets:

● Flights dataset: Details on 180M commercial flights in the U.S. since 1987, 180 
million records

● Weather dataset: NOAA weather statistics for different U.S. locations
● GAIA: Sky survey by the European Space Agency with records for over a billion 

stars, over a billion records.

● Indexing time increases with data size (as expected)
● In the browser, view switching times remain below 5 seconds even for datasets with 10 

million records
● Low-resolution indexing doesn't reduce indexing time in the browser but can cut average 

time by up to 6x with a backing database server (OmniSci’s Core)
● Loading the first data tile from Core is up to 24x faster than loading all data tiles in an 

index

Observations:
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Limitations and Future Work
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● Data Size and Latency Assumptions: Falcon's index can be computed 
on the fly from a single scan by the backing database under certain 
latency assumptions. It assumes that the dataset size is manageable 
within these latency thresholds.

● Approximation techniques for databases is not yet applied
● Visualization Types: Falcon does not support non-aggregated views 

where each record is rendered as a separate mark.
● Interactions: Falcon assumes that users primarily interact with a 

single view at a time, it may not hold true for touch-enabled devices.
● Concurrency: Falcon does not take full advantage of concurrent 

queries, prototype is written in Javascript and thus single threaded.
● Aggregation Functions: Falcon is limited to summable aggregate 

functions like count. The paper suggests that future iterations could 
implement more advanced functions.

● Other Interactions: Prioritize and optimize interactions like 
zooming and panning for improved user experience.



Thank you!


