
Falcon: Balancing Interactive
Latency and Resolution Sensitivity
for Scalable Linked Visualizations

CHI '19: Proceedings of CHI Conference on Human Factors in Computing Systems,
Glasgow, Scotland UK

May 2019

D. Moritz et al.

Role Played as author by: Chandramita Dutta, MIMS 2024

https://doi.org/10.1145/3290605

Latency is frustrating, specially during data
exploration.

1.

Chandramita Dutta | Info 290

Interactive visualization systems are crucial for effective
data exploration and analysis.

Interactivity means offering rapid response times for
user operations. More crucial for latency sensitive

operations like selecting, brushing and linking.

Delayed responses might cause a hindrance in the user’s
perception of a cause-and-effect relationship.

Chandramita Dutta | Info 290

Why is it important to solve this problem?

Improve user engagement - to retain a user’s attention and encourage them to
explore the data.

Reduce selection bias in analysts - they might gravitate to "convenient" and
familiar datasets, as delays in exploring large datasets can be frustrating.

Enable “cold-start” analytics - reduce friction of using new data and avoiding
time consuming precomputation

Scale and complexity of data is increasing - more emphasis on effective
exploration.

Chandramita Dutta | Info 290

Research Question

"How can we design a system for interactive data
exploration and visualization that provides low-latency
interactions, even for very large datasets, without the
need for time-consuming precomputation”

Chandramita Dutta | Info 290

Important concepts in this space
● Binned Aggregates - summarize data by dividing it into bins and aggregating

records within each bin

● Scalable Visual Analysis Systems - either client-only or client-server architectures,
depending on dataset size and complexity.

● Scalable Data Processing for Visualization - three main approaches: parallel
evaluation, indexing, and approximation.

● Indexing - to precompute aggregates along specific dimensions, significantly
speeding up query evaluation.

● Approximation - to estimate result values and their uncertainty using a data
sample.

● Prefetching - predict likely queries and precompute and cache results.

Chandramita Dutta | Info 290

Challenges with Prior Approaches
● Limited interactivity: Traditionally, the different stages of the data processing

pipeline have been optimized as independent modules. Yet, interactivity is still
difficult to achieve due to factors outside the scope of database optimizations,
such as network latency.

● Scalability problems: Indexing and data cube approaches, used to handle large
datasets in real-time can be efficient but may have lengthy index-building
times, especially for datasets with billions of records.

● Data Cube Limitations: Data cube-based approaches, like imMens, can support
real-time brushing and linking but may limit interactions to a single brush.
Additionally, they often snap brushes to visible bins, limiting flexibility in zoom
levels.

● Approximation Limitations: Approximate query processing systems, while
useful for exploratory analysis, may not support interactive brushing and linking,
which are crucial for visual exploration.

● Prefetching Challenges: Predictive prefetching approaches need to anticipate
user queries accurately, which can be challenging in practice

Chandramita Dutta | Info 290

What is new?
Falcon optimizes the interface and query systems
together. The allocation of compute resources is
prioritized to interactions for which users are more
latency-sensitive:

Chandramita Dutta | Info 290

How?

 every query as an
independent request

optimize a user’s session
with client-side state

active view

raw dataBrushing interactions

latency for brushing prefetching and
indexing techniques

The Interface

Chandramita Dutta | Info 290
Flights dataset:180 million records

Interface: key components

Chandramita Dutta | Info 290

Charts for Zero/One/Two-Dimensional Data - views
show aggregates grouped by zero, one or two binned
dimensions.

Zero dimensional data - record
count hor/vert bar or text view

One dimensional data - bar charts two dimensional data - size/color

Chandramita Dutta | Info 290

Brushing in the Active View

Falcon uses an index, a compact summary
that contains the details needed to update
passive views for any possible brush in the
active view.

Rapid brush updates are decoupled from full
dataset.

Active view

Passive view

Chandramita Dutta | Info 290

Switching Active Views

To draw a new brush, a new index is created,
replacing the previous.
New index is conditioned on previous view,
meaning counts must be filtered according
to the selected ranges

After a view switch the distance
histogram is active, and the user
can draw a brush there.

Active view 1

Active view 2

Chandramita Dutta | Info 290

Zooming the Active View

Since scale changes require no new data,
there are no delays.
When the zoom interaction ends, Falcon
computes a new bin width and offset.

You can zoom histograms. Falcon
automatically re-bins the data.

Chandramita Dutta | Info 290

Prefetching

● Falcon doesn't wait for the first interaction with a new active view
to create a new index.

● Falcon can prefetch indexes before a user starts brushing.
● Predictive Prefetching - Falcon can predict user actions, such as

hovering over a view before drawing a new brush.
● Mouse hover is a strong indicator of user attention.
● Falcon utilizes long idle times between interactions to

precompute additional indexes.

Chandramita Dutta | Info 290

Prefetching - example

Chandramita Dutta | Info 290

Demo

https://vega.github.io/falcon/flights/

https://vega.github.io/falcon/flights/

Chandramita Dutta | Info 290

How Falcon Implemented the
described interactions?

Chandramita Dutta | Info 290

Index of Data Tiles

● Falcon uses an index known as a
"Data Tile"

● The data for binned aggregate
views is stored in ndarrays

● Histogram that is p pixels wide
-> has p^2 distinct brushes ->
p^2 cube slices to be stored for
each passive view

● Falcon encodes these p^2 slices
as p cumulative slices and
stores these cumulative counts
in a single multidimensional
array - Data Tile

● Data tiles -> cumulative cube
slices - computed in constant
time (O(1))

Chandramita Dutta | Info 290

Computing Data Tiles
Two Query Systems to compute data tiles efficiently

In-Browser Engine - queries over tens of millions of records

● The browser engine creates an empty multidimensional array for
binned dimensions.

● It counts records within each array cell from filtered data and
computes cumulative sums along active view dimensions.

● It also tracks unfiltered counts for records outside the active view.
● Its performance depends on the number of bins in active and passive

dimensions.

Chandramita Dutta | Info 290

Database Server Engine

● The database engine issues queries
that perform binning and
aggregation in a scalable database
system, such as OmniSci Core

● Falcon generates aggregate
queries that filter by the brushes in
the other passive views and group
by the bins in the dimensions of
the active and passive views

● Query results are received
client-side and written into a
multidimensional array.

● It also tracks unfiltered counts for
records outside the active view.

Chandramita Dutta | Info 290

Progressive Interaction

Along with brushing, switching active dimensions, and zooming are core user interactions in
Falcon.

Progressive Interaction helps reduce latency in these interactions.

Steps:
● Works by initially loading small data tiles with lower bin counts than pixel counts in the

active view.
● Allows users to interact with the active view, but brushes snap to the closest datatile bin

boundaries.
● Loads the full pixel resolution in the background (more granularity)

Chandramita Dutta | Info 290

Enhancing Brushing with Interpolation
● Brushes snapping to the closest bins can limit precision.

To enable brushing at pixel resolution with low-resolution data, Falcon offers interpolation

● In Progressive Interaction, Falcon starts with low-resolution data.
● Approximates brushing at pixel resolution using interpolation.
● Interpolates between bin counts at the closest bin boundaries to current brush ends.
● Interpolated bin counts enable precise brush placement, enhancing user experience.
● Users can place multiple brushes without waiting for full resolution data to load.

Chandramita Dutta | Info 290

Benchmark Evaluations
- Falcon Vs. Square's Cross-filter and imMens

Chandramita Dutta | Info 290

Falcon outperforms Square's
Cross-filter in brushing
performance, maintaining more
than 50 frames per second for
passive view updates.

Brushing Performance

Chandramita Dutta | Info 290

● Wasserstein metric (Earth
Mover's Distance) was used to
measure the interpolation error
for pixel-level brushing with
low-resolution data tiles

● Majority of Cases: Small errors
(<< 0.01).

● Error is largest (> 0.04) for highly
selective filters (< 0.2%) since bin
counts with few records are more
susceptible to noise, and the
Wasserstein metric compares
two distributions.

Interpolation Accuracy of Brushes

Chandramita Dutta | Info 290

View Indexing Cost

Falcon was tested on three datasets:

● Flights dataset: Details on 180M commercial flights in the U.S. since 1987, 180
million records

● Weather dataset: NOAA weather statistics for different U.S. locations
● GAIA: Sky survey by the European Space Agency with records for over a billion

stars, over a billion records.

● Indexing time increases with data size (as expected)
● In the browser, view switching times remain below 5 seconds even for datasets with 10

million records
● Low-resolution indexing doesn't reduce indexing time in the browser but can cut average

time by up to 6x with a backing database server (OmniSci’s Core)
● Loading the first data tile from Core is up to 24x faster than loading all data tiles in an

index

Observations:

Chandramita Dutta | Info 290

Limitations and Future Work

Chandramita Dutta | Info 290

● Data Size and Latency Assumptions: Falcon's index can be computed
on the fly from a single scan by the backing database under certain
latency assumptions. It assumes that the dataset size is manageable
within these latency thresholds.

● Approximation techniques for databases is not yet applied
● Visualization Types: Falcon does not support non-aggregated views

where each record is rendered as a separate mark.
● Interactions: Falcon assumes that users primarily interact with a

single view at a time, it may not hold true for touch-enabled devices.
● Concurrency: Falcon does not take full advantage of concurrent

queries, prototype is written in Javascript and thus single threaded.
● Aggregation Functions: Falcon is limited to summable aggregate

functions like count. The paper suggests that future iterations could
implement more advanced functions.

● Other Interactions: Prioritize and optimize interactions like
zooming and panning for improved user experience.

Thank you!

