
Trust, but Verify: Optimistic Visualizations of Approximate Queries for Exploring Big Data

Authors: Dominik Moritz, Danyel Fisher, Bolin Ding, Chi Wang

Presenter: Alice Yeh

Obstacles in Exploratory Visualization

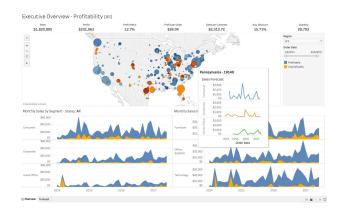
- Scientists want to derive insights from large datasets
- But...
 - Screen cannot render so much data and visualizations get cluttered
 - Database queries take a long time to return

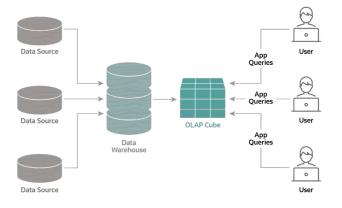
Approximate Query Processing (AQP)

- Sample the dataset
 - Allows visualization in interactive time using approximate values
- Does this solve all our problems?
 - Approximate values can be incorrect
 - Can we trust approximate values with business-critical decisions? What if we take multiple samples—at what point are these visualizations reliable?

Optimistic Visualization

- Produces approximate results quickly and computes precise results in the background
- Best of both worlds
 - Speed of approximation and ability to check for precision

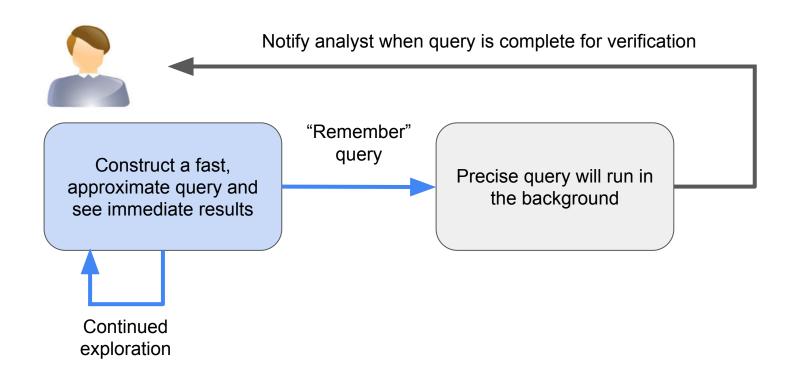

What Has Been Done in this Space?

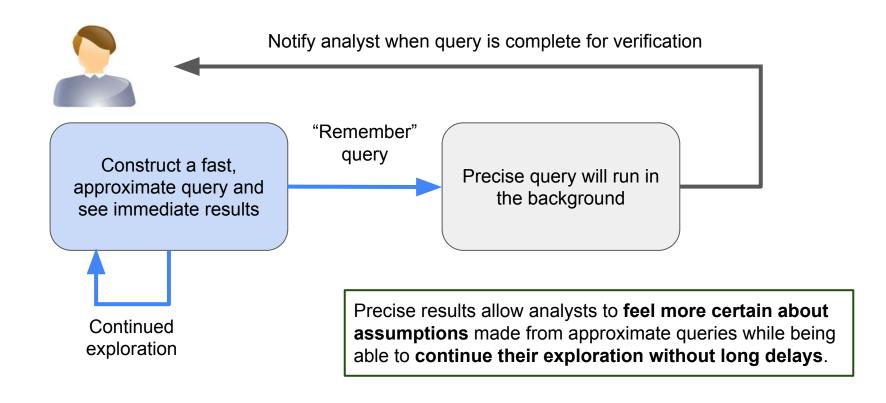

Exploratory visualization

- Iterative process (broader → specific questions) that prioritizes speed
- Enabled by visualization tools (Tableau, PowerBI, Matplotlib)

Big data visualization

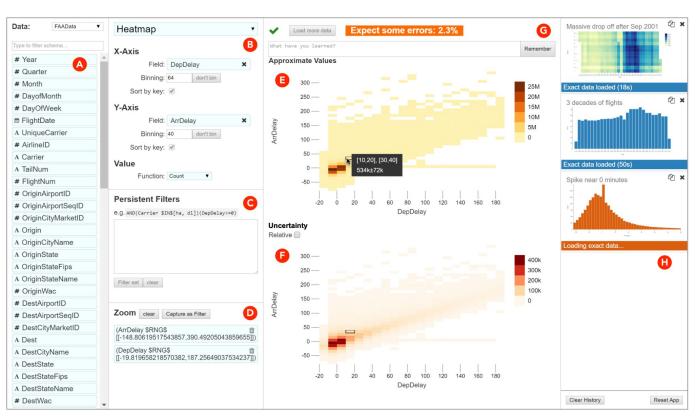
- Data retrieval and processing are bottlenecks
 - Offline processing phase
 - Online Analytical Processing (OLAP) systems




What Has Been Done in this Space?

- Approximate query processing
 - Look at less data more quickly
 - Available tools...
 - Create sample of data before user begins analysis but precision diminishes as analyst filters records
 - Pick a sample and compute results with estimated error bounds but it is up to the analyst to choose between max query runtime or error bound
- Progressive visualization with online aggregation (OLA)
 - Picks increasing sample sizes and displays results, user decides when to end process
 - Optimistic visualization is asynchronous form of this

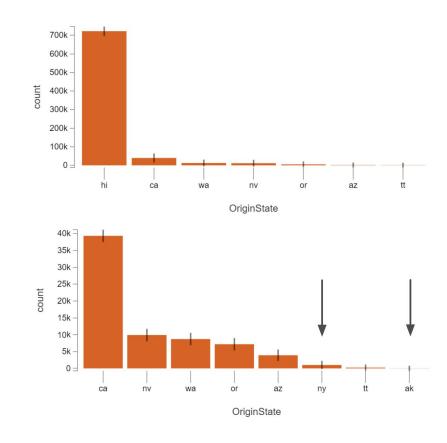
Optimistic Visualization, Visualized


Optimistic Visualization, Visualized

Pangloss: Optimistic Visualization Tool with AQP

- Enables analysts to rapidly explore large multi-dimensional datasets
 - Grouping, aggregating, filtering functionality
- Web based UI that queries Sample+Seek (AQP system)
 - Highly responsive to aggregate queries on a single table
 - o Incrementally loads more records until uncertainty bound is below a threshold or timeout
 - Uses measure-biased sampling
 - Fewer samples necessary for same accuracy (vs. uniform sampling)
 - Optimizes distribution uncertainty

Pangloss UI

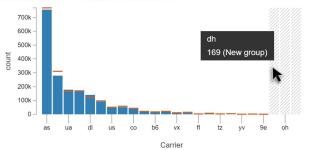

Visualizations in Pangloss

- Approximate visualizations
 - Displays top k bars or cells to deal with queries with long tails
 - Distribution uncertainty is displayed
- Zooming and filtering
 - Operations will force new query to run → aggregate values and uncertainty can change
 - Negative filtering semantics
- Data transformations

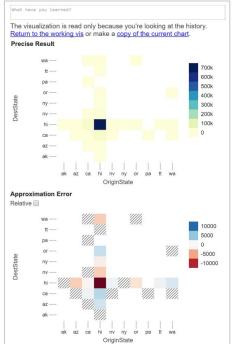
Visualizations in Pangloss

- Approximate visualizations
 - Displays top k bars or cells to deal with queries with long tails
 - Distribution uncertainty is displayed
- Zooming and filtering
 - Operations will force new query to run → aggregate values and uncertainty can change
 - Negative filtering semantics
- Data transformations

"Remembering" Views


- "Remembering" view = re-running query to get precise result
- Which views should we remember?
 - Strawman: remember all past views
 - Overwhelming for user to review all views
 - Computationally expensive
 - Make it an explicit process → have users decide


Design choices


- "Remember" button for users to specify views to store and re-run
- Render approximate views in orange and precise ones in blue

"Remembering" Views

User Studies

Motivating questions

- Comfort with incomplete or inaccurate results and usage towards exploring approximate data
- Proceed with exploration without knowing precise results
- Checking precise results interrupting flow

User studies

- Pangloss as a data analytics toolkit for usable insights
- Pangloss applied to real-world systems

Flight Delay Study

- BTS Flight Delays dataset (70 GB), 5 data scientists (familiar w/ visualization tools)
- Participant sessions (1 hour)
 - Tutorial w/ training questions
 - Exploratory analysis with tool, prompted by introductory questions
 - Encouragement to review precise results

Results

- 4 users regularly "remembering" visualizations (4-7 views)
 - Most usage of "remember" functionality for uncertain results
- Appreciation for speed of Pangloss
- Limitation: cannot see and interact with lower-level data

Real-World Case Studies

- 3 users with >10 GB datasets
- Search terms case study
 - Analyst working on a search engine advertising platform, interested in predicting trends in searches and keywords
 - Dataset pre-aggregated with 994M rows of data
 - Usage: bulk of time spent on heatmap with a dozen or more keywords at a time
 - Trends discovered: weekly pattern, spike over a month
 - Follow up with request to use Pangloss again with a less aggregated version of the dataset

User Study Findings

- Users see precision broadly
 - Want rapid interaction in exploratory phase and precise results for presenting to decision makers
- Recording observations and "remembering" views is a useful feature
- More features desired
 - Ability to see underlying data
 - More transformations, aggregations, and projections options

Summary

- Optimistic visualization enables the benefits of both speed and precision
- Pangloss is an optimistic visualization tool that serves quick visualizations on approximate data and runs user-selected queries on precise data in the background
- User studies have shown value in Pangloss's workflow, allowing for rapid interaction during exploration and precise results for critical decision making