
INFO 290T
Human-Centered Data Management

Gestural Query Specification

1

Thoughts on Paper?

• Interface?
• Evaluation?
• Writing?

2

• Touch-based interfaces to manipulate data

• Pros: people not used to databases can manipulate data

Key Ideas

Questions

• Was the user study “fairly” conducted? What else would you have
done?

Questions

• Was the user study “fairly” conducted? What else would you have
done?
• GestureQuery may be easy to specify small q but may be hard to specify

more complex ones
• Discoverability only on join: not clear if more complex queries are

discoverable

Questions

• GestureQuery
• Provides feedback as queries are being composed. Can there be issues?

Questions

• GestureQuery
• Provides feedback as queries are being composed. Can there be issues?

• Will only work for small tables. What about predicate pushdown after a cross-product?
• Going against the declarative nature of databases if query results are composed

iteratively.

Alternatives: Excel

• When would GestureQuery be better than Excel?

• When would they be worse?

Alternatives: Excel

• When would GestureQuery be better than Excel?
• More tactile and therefore more intuitive
• Relational operations not supported by Excel

• Joins not supported
• Primarily formulae rather than relational expressions

• When would they be worse?
• Plotting charts
• Looking at all your data at once

Alternatives: Visual Analytics Tools

• When would GestureQuery be better than Tableau?

• When would it be worse?

Alternatives: Visual Analytics Tools

• When would GestureQuery be better than Tableau? When would it
be worse?
• When selection, creation of new tables, joins, is key rather than aggregate

queries

Alternatives: Query By Example

6
QUERY-BY-EXAMPLE (QBE)

Example is always more efficacious than precept.

—Samuel Johnson

6.1 INTRODUCTION

Query-by-Example (QBE) is another language for querying (and, like SQL, for creating
and modifying) relational data. It is different from SQL, and from most other database
query languages, in having a graphical user interface that allows users to write queries
by creating example tables on the screen. A user needs minimal information to get
started and the whole language contains relatively few concepts. QBE is especially
suited for queries that are not too complex and can be expressed in terms of a few
tables.

QBE, like SQL, was developed at IBM and QBE is an IBM trademark, but a number
of other companies sell QBE-like interfaces, including Paradox. Some systems, such as
Microsoft Access, offer partial support for form-based queries and reflect the influence
of QBE. Often a QBE-like interface is offered in addition to SQL, with QBE serving as
a more intuitive user-interface for simpler queries and the full power of SQL available
for more complex queries. An appreciation of the features of QBE offers insight into
the more general, and widely used, paradigm of tabular query interfaces for relational
databases.

This presentation is based on IBM’s Query Management Facility (QMF) and the QBE
version that it supports (Version 2, Release 4). This chapter explains how a tabular
interface can provide the expressive power of relational calculus (and more) in a user-
friendly form. The reader should concentrate on the connection between QBE and
domain relational calculus (DRC), and the role of various important constructs (e.g.,
the conditions box), rather than on QBE-specific details. We note that every QBE
query can be expressed in SQL; in fact, QMF supports a command called CONVERT
that generates an SQL query from a QBE query.

We will present a number of example queries using the following schema:

Sailors(sid: integer, sname: string, rating: integer, age: real)

177

178 Chapter 6

Boats(bid: integer, bname: string, color: string)
Reserves(sid: integer, bid: integer, day: dates)

The key fields are underlined, and the domain of each field is listed after the field name.

We introduce QBE queries in Section 6.2 and consider queries over multiple relations
in Section 6.3. We consider queries with set-difference in Section 6.4 and queries
with aggregation in Section 6.5. We discuss how to specify complex constraints in
Section 6.6. We show how additional computed fields can be included in the answer in
Section 6.7. We discuss update operations in QBE in Section 6.8. Finally, we consider
relational completeness of QBE and illustrate some of the subtleties of QBE queries
with negation in Section 6.9.

6.2 BASIC QBE QUERIES

A user writes queries by creating example tables. QBE uses domain variables, as in
the DRC, to create example tables. The domain of a variable is determined by the
column in which it appears, and variable symbols are prefixed with underscore () to
distinguish them from constants. Constants, including strings, appear unquoted, in
contrast to SQL. The fields that should appear in the answer are specified by using
the command P., which stands for print. The fields containing this command are
analogous to the target-list in the SELECT clause of an SQL query.

We introduce QBE through example queries involving just one relation. To print the
names and ages of all sailors, we would create the following example table:

Sailors sid sname rating age
P. N P. A

A variable that appears only once can be omitted; QBE supplies a unique new name
internally. Thus the previous query could also be written by omitting the variables
N and A, leaving just P. in the sname and age columns. The query corresponds to
the following DRC query, obtained from the QBE query by introducing existentially
quantified domain variables for each field.

{〈N, A〉 | ∃I, T (〈I, N, T, A〉 ∈ Sailors)}

A large class of QBE queries can be translated to DRC in a direct manner. (Of course,
queries containing features such as aggregate operators cannot be expressed in DRC.)
We will present DRC versions of several QBE queries. Although we will not define the
translation from QBE to DRC formally, the idea should be clear from the examples;

Query-by-Example (QBE) 179

intuitively, there is a term in the DRC query for each row in the QBE query, and the
terms are connected using ∧.1

A convenient shorthand notation is that if we want to print all fields in some relation,
we can place P. under the name of the relation. This notation is like the SELECT *
convention in SQL. It is equivalent to placing a P. in every field:

Sailors sid sname rating age
P.

Selections are expressed by placing a constant in some field:

Sailors sid sname rating age
P. 10

Placing a constant, say 10, in a column is the same as placing the condition =10. This
query is very similar in form to the equivalent DRC query

{〈I, N, 10, A〉 | 〈I, N, 10, A〉 ∈ Sailors}

We can use other comparison operations (<, >, <=, >=,¬) as well. For example, we
could say < 10 to retrieve sailors with a rating less than 10 or say ¬10 to retrieve
sailors whose rating is not equal to 10. The expression ¬10 in an attribute column is
the same as %= 10. As we will see shortly, ¬ under the relation name denotes (a limited
form of) ¬∃ in the relational calculus sense.

6.2.1 Other Features: Duplicates, Ordering Answers

We can explicitly specify whether duplicate tuples in the answer are to be eliminated
(or not) by putting UNQ. (respectively ALL.) under the relation name.

We can order the presentation of the answers through the use of the .AO (for ascending
order) and .DO commands in conjunction with P. An optional integer argument allows
us to sort on more than one field. For example, we can display the names, ages, and
ratings of all sailors in ascending order by age, and for each age, in ascending order by
rating as follows:

Sailors sid sname rating age
P. P.AO(2) P.AO(1)

1The semantics of QBE is unclear when there are several rows containing P. or if there are rows
that are not linked via shared variables to the row containing P. We will discuss such queries in Section
6.6.1.

Query-by-Example (QBE) 179

intuitively, there is a term in the DRC query for each row in the QBE query, and the
terms are connected using ∧.1

A convenient shorthand notation is that if we want to print all fields in some relation,
we can place P. under the name of the relation. This notation is like the SELECT *
convention in SQL. It is equivalent to placing a P. in every field:

Sailors sid sname rating age
P.

Selections are expressed by placing a constant in some field:

Sailors sid sname rating age
P. 10

Placing a constant, say 10, in a column is the same as placing the condition =10. This
query is very similar in form to the equivalent DRC query

{〈I, N, 10, A〉 | 〈I, N, 10, A〉 ∈ Sailors}

We can use other comparison operations (<, >, <=, >=,¬) as well. For example, we
could say < 10 to retrieve sailors with a rating less than 10 or say ¬10 to retrieve
sailors whose rating is not equal to 10. The expression ¬10 in an attribute column is
the same as %= 10. As we will see shortly, ¬ under the relation name denotes (a limited
form of) ¬∃ in the relational calculus sense.

6.2.1 Other Features: Duplicates, Ordering Answers

We can explicitly specify whether duplicate tuples in the answer are to be eliminated
(or not) by putting UNQ. (respectively ALL.) under the relation name.

We can order the presentation of the answers through the use of the .AO (for ascending
order) and .DO commands in conjunction with P. An optional integer argument allows
us to sort on more than one field. For example, we can display the names, ages, and
ratings of all sailors in ascending order by age, and for each age, in ascending order by
rating as follows:

Sailors sid sname rating age
P. P.AO(2) P.AO(1)

1The semantics of QBE is unclear when there are several rows containing P. or if there are rows
that are not linked via shared variables to the row containing P. We will discuss such queries in Section
6.6.1.

180 Chapter 6

6.3 QUERIES OVER MULTIPLE RELATIONS

To find sailors with a reservation, we have to combine information from the Sailors and
the Reserves relations. In particular we have to select tuples from the two relations
with the same value in the join column sid. We do this by placing the same variable
in the sid columns of the two example relations.

Sailors sid sname rating age
Id P. S

Reserves sid bid day
Id

To find sailors who have reserved a boat for 8/24/96 and who are older than 25, we
could write:2

Sailors sid sname rating age
Id P. S > 25

Reserves sid bid day
Id ‘8/24/96’

Extending this example, we could try to find the colors of Interlake boats reserved by
sailors who have reserved a boat for 8/24/96 and who are older than 25:

Sailors sid sname rating age
Id > 25

Reserves sid bid day
Id B ‘8/24/96’

Boats bid bname color
B Interlake P.

As another example, the following query prints the names and ages of sailors who have
reserved some boat that is also reserved by the sailor with id 22:

Sailors sid sname rating age
Id P. N

Reserves sid bid day
Id B

22 B

Each of the queries in this section can be expressed in DRC. For example, the previous
query can be written as follows:

{〈N〉 | ∃Id, T, A, B, D1, D2(〈Id, N, T, A〉 ∈ Sailors

∧〈Id, B, D1〉 ∈ Reserves ∧ 〈22, B, D2〉 ∈ Reserves)}
2Incidentally, note that we have quoted the date value. In general, constants are not quoted in

QBE. The exceptions to this rule include date values and string values with embedded blanks or
special characters.

180 Chapter 6

6.3 QUERIES OVER MULTIPLE RELATIONS

To find sailors with a reservation, we have to combine information from the Sailors and
the Reserves relations. In particular we have to select tuples from the two relations
with the same value in the join column sid. We do this by placing the same variable
in the sid columns of the two example relations.

Sailors sid sname rating age
Id P. S

Reserves sid bid day
Id

To find sailors who have reserved a boat for 8/24/96 and who are older than 25, we
could write:2

Sailors sid sname rating age
Id P. S > 25

Reserves sid bid day
Id ‘8/24/96’

Extending this example, we could try to find the colors of Interlake boats reserved by
sailors who have reserved a boat for 8/24/96 and who are older than 25:

Sailors sid sname rating age
Id > 25

Reserves sid bid day
Id B ‘8/24/96’

Boats bid bname color
B Interlake P.

As another example, the following query prints the names and ages of sailors who have
reserved some boat that is also reserved by the sailor with id 22:

Sailors sid sname rating age
Id P. N

Reserves sid bid day
Id B

22 B

Each of the queries in this section can be expressed in DRC. For example, the previous
query can be written as follows:

{〈N〉 | ∃Id, T, A, B, D1, D2(〈Id, N, T, A〉 ∈ Sailors

∧〈Id, B, D1〉 ∈ Reserves ∧ 〈22, B, D2〉 ∈ Reserves)}
2Incidentally, note that we have quoted the date value. In general, constants are not quoted in

QBE. The exceptions to this rule include date values and string values with embedded blanks or
special characters.

Print all sailor tuples with
rating 10

Print names, ratings, ages of
all sailors ordered by a, r

Print all sailors with a
reservation

Print colors of interlake
boats reserved by sailors on
8/24/94, with age > 25

Moshe Zloof, IBM, ‘70s

Alternatives: Query By Example
• Print average age

grouped by rating

• Print sailors <30 or <
20

• Print sailors <30 and >
20

182 Chapter 6

of COUNT., which does eliminate duplicates. To eliminate duplicate values, the variants
AVG.UNQ. and SUM.UNQ. must be used. (Of course, this is irrelevant for MIN. and MAX.)
Curiously, there is no variant of COUNT. that does not eliminate duplicates.

Consider the instance of Sailors shown in Figure 6.1. On this instance the following

sid sname rating age
22 dustin 7 45.0
58 rusty 10 35.0
44 horatio 7 35.0

Figure 6.1 An Instance of Sailors

query prints the value 38.3:

Sailors sid sname rating age
A P.AVG. A

Thus, the value 35.0 is counted twice in computing the average. To count each age
only once, we could specify P.AVG.UNQ. instead, and we would get 40.0.

QBE supports grouping, as in SQL, through the use of the G. command. To print
average ages by rating, we could use:

Sailors sid sname rating age
G.P. A P.AVG. A

To print the answers in sorted order by rating, we could use G.P.AO or G.P.DO. instead.
When an aggregate operation is used in conjunction with P., or there is a use of the
G. operator, every column to be printed must specify either an aggregate operation or
the G. operator. (Note that SQL has a similar restriction.) If G. appears in more than
one column, the result is similar to placing each of these column names in the GROUP
BY clause of an SQL query. If we place G. in the sname and rating columns, all tuples
in each group have the same sname value and also the same rating value.

We consider some more examples using aggregate operations after introducing the
conditions box feature.

Query-by-Example (QBE) 185

Sailors sid sname rating age
Id P. < 30
Id > 20

The DRC formula for this query contains a term for each linked row, and these terms
are connected using ∧:

{〈N〉 | ∃I1, N1, T1, A1, N2, T2, A2
(〈I1, N1, T1, A1〉 ∈ Sailors(A1 < 30 ∧ N = N1)
∧〈I1, N2, T2, A2〉 ∈ Sailors(A2 > 20 ∧ N = N2))}

Compare this DRC query with the DRC version of the previous query to see how
closely they are related (and how closely QBE follows DRC).

6.7 UNNAMED COLUMNS

If we want to display some information in addition to fields retrieved from a relation, we
can create unnamed columns for display.3 As an example—admittedly, a silly one!—we
could print the name of each sailor along with the ratio rating/age as follows:

Sailors sid sname rating age
P. R A P. R / A

All our examples thus far have included P. commands in exactly one table. This is a
QBE restriction. If we want to display fields from more than one table, we have to use
unnamed columns. To print the names of sailors along with the dates on which they
have a boat reserved, we could use the following:

Sailors sid sname rating age
Id P. P. D

Reserves sid bid day
Id D

Note that unnamed columns should not be used for expressing conditions such as
D >8/9/96; a conditions box should be used instead.

6.8 UPDATES

Insertion, deletion, and modification of a tuple are specified through the commands
I., D., and U., respectively. We can insert a new tuple into the Sailors relation as
follows:

3A QBE facility includes simple commands for drawing empty example tables, adding fields, and
so on. We do not discuss these features but assume that they are available.

184 Chapter 6

The problem is that in conjunction with G., only columns with either G. or an
aggregate operation can be printed. This limitation is a direct consequence of the
SQL definition of GROUPBY, which we discussed in Section 5.5.1; QBE is typically
implemented by translating queries into SQL. If P.G. replaces P. in the sname
column, the query is legal, and we then group by both sid and sname, which
results in the same groups as before because sid is a key for Sailors.

Express conditions involving the AND and OR operators. We can print the names
of sailors who are younger than 20 or older than 30 as follows:

Sailors sid sname rating age
P. A

Conditions

A < 20 OR 30 < A

We can print the names of sailors who are both younger than 20 and older than
30 by simply replacing the condition with A < 20 AND 30 < A; of course, the
set of such sailors is always empty! We can print the names of sailors who are
either older than 20 or have a rating equal to 8 by using the condition 20 < A OR
R = 8, and placing the variable R in the rating column of the example table.

6.6.1 And/Or Queries

It is instructive to consider how queries involving AND and OR can be expressed in QBE
without using a conditions box. We can print the names of sailors who are younger
than 30 or older than 20 by simply creating two example rows:

Sailors sid sname rating age
P. < 30
P. > 20

To translate a QBE query with several rows containing P., we create subformulas for
each row with a P. and connect the subformulas through ∨. If a row containing P. is
linked to other rows through shared variables (which is not the case in this example),
the subformula contains a term for each linked row, all connected using ∧. Notice how
the answer variable N , which must be a free variable, is handled:

{〈N〉 | ∃I1, N1, T1, A1, I2, N2, T2, A2(
〈I1, N1, T1, A1〉 ∈ Sailors(A1 < 30 ∧ N = N1)
∨〈I2, N2, T2, A2〉 ∈ Sailors(A2 > 20 ∧ N = N2))}

To print the names of sailors who are both younger than 30 and older than 20, we use
the same variable in the key fields of both rows:

Alternatives: Query By Example

Advantages, Disadvantages?

Alternatives: Query By Example

Advantages, Disadvantages?

Advantages: more powerful, requires less visual manipulation, few
keystrokes

Disadvantages: less “fun”? Less “intuitive”?

Alternatives: Keyword Search in DB

Key Idea of a Data Graph: Captures relationships and their
strengths, among data and metadata items

Nodes
• Classes, tables, attributes, field values
• May be weighted – representing authoritativeness, quality, correctness, etc.

Edges
• is-a and has-a relationships, foreign keys, hyperlinks, record links, possible

joins, …
• May be weighted – representing strength of the connection, probability of

match, etc.

Alternatives: Keyword Search in DB

• Queries are expressed as sets of keywords

• We match keywords to nodes, then seek to find a way to
“connect” the matches in a tree

• The lowest-cost tree connecting a set of nodes is called a Steiner
tree
• Formally, we want the top-k Steiner trees
• NP-Hard

Examples (from original papers)

Multi-Query Optimization

Sudarshan Prasan Roy

writes

author

paper

Soumen

BANKS: Keyword search…

May be one way of reaching all keywords

Or multiple ways

How to rank these?
Simple rule: Longer paths are worse

