INFO 290T Human-Centered Data Management Gestural Query Specification

Thoughts on Paper?

- Interface?
- Evaluation?
- Writing?

Key Ideas

- Touch-based interfaces to manipulate data
- Pros: people not used to databases can manipulate data

• Was the user study "fairly" conducted? What else would you have done?

- Was the user study "fairly" conducted? What else would you have done?
 - GestureQuery may be easy to specify small q but may be hard to specify more complex ones
 - Discoverability only on join: not clear if more complex queries are discoverable

- GestureQuery
 - Provides feedback as queries are being composed. Can there be issues?

- GestureQuery
 - Provides feedback as queries are being composed. Can there be issues?
 - Will only work for small tables. What about predicate pushdown after a cross-product?
 - Going against the declarative nature of databases if query results are composed iteratively.

Alternatives: Excel

• When would GestureQuery be better than Excel?

• When would they be worse?

Alternatives: Excel

- When would GestureQuery be better than Excel?
 - More tactile and therefore more intuitive
 - Relational operations not supported by Excel
 - Joins not supported
 - Primarily formulae rather than relational expressions
- When would they be worse?
 - Plotting charts
 - Looking at all your data at once

Alternatives: Visual Analytics Tools

• When would GestureQuery be better than Tableau?

• When would it be worse?

Alternatives: Visual Analytics Tools

- When would GestureQuery be better than Tableau? When would it be worse?
 - When selection, creation of new tables, joins, is key rather than aggregate queries

Alternatives: Query By Example Moshe Zloof, IBM, '70s

Sailors(*sid:* integer, *sname:* string, *rating:* integer, *age:* real)

Boats(*bid:* integer, *bname:* string, *color:* string) Reserves(*sid:* integer, *bid:* integer, *day:* dates)

Sailors	sid	sname	rating	age
Ρ.			10	

Sailors	sid	sname	rating	age
		Ρ.	P.AO(2)	P.AO(1)

Sailors	sid	sname	rating	age	Reserves	sid	bid	day
	_Id	PS				_Id		

Sailors	sid	sname	rating	age
	_Id			> 25

Reserves	sid	bid	day	Boats	bid	bname	color
	_Id	_B	<u>'8/24/96'</u>		B	Interlake	Ρ.

Print all sailor tuples with rating 10

Print names, ratings, ages of all sailors ordered by a, r

Print all sailors with a reservation

Print colors of interlake boats reserved by sailors on 8/24/94, with age > 25

Alternatives: Query By Example

Sailors	sid	sname	rating	age	
			G.P.	_A	P.AVGA

• Print average age grouped by rating

Sailors	sid	sname	rating	age
		Ρ.		< 30
		Ρ.		> 20

Print sailors <30 or < 20

Sailors	sid	sname	rating	age
	_Id	Ρ.		< 30
	_Id			> 20

Print sailors <30 and > 20

Alternatives: Query By Example

Advantages, Disadvantages?

Alternatives: Query By Example

Advantages, Disadvantages?

Advantages: more powerful, requires less visual manipulation, few keystrokes

Disadvantages: less "fun"? Less "intuitive"?

Alternatives: Keyword Search in DB

Key Idea of a **Data Graph**: Captures **relationships and their strengths**, among data and metadata items

Nodes

- Classes, tables, attributes, field values
- May be **weighted** representing authoritativeness, quality, correctness, etc.

Edges

- is-a and has-a relationships, foreign keys, hyperlinks, record links, possible joins, ...
- May be weighted representing strength of the connection, probability of match, etc.

Alternatives: Keyword Search in DB

- Queries are expressed as sets of keywords
- We match keywords to nodes, then seek to find a way to "connect" the matches in a **tree**
- The lowest-cost tree connecting a set of nodes is called a Steiner tree
 - Formally, we want the **top-k Steiner trees**
 - NP-Hard

Examples (from original papers)

May be one way of reaching all keywords

Or multiple ways

How to rank these?

Simple rule: Longer paths are worse

