
INFO 290T
Human-Centered Data Management

SpeakQL

1

OK, so…

• We’ve talked about various ways to express SQL queries
• Visual query builders
• GestureDB
• Query by Example

• Onto speech!

2

Why is Speech to SQL interesting?

• Technology trends:
• Speech interfaces are becoming more popular

• Think cell phones, smart speaker devices, audio in computers
• Speech-based assistants: Alexa, Siri, Cortana, …

• Automatic Speech Recognition (ASR) progress enough to understand speech

• Human factors:
• (Not a focus of the paper) Accessibility

• “A rising tide raises all boats” – accessible interfaces help disabled people as well as older
people, people in rural areas, … plus also folks without disabilities!

• Preferred by folks “on the go” or those who prefer speech to typing

3

Why SQL as a target?

• SQL is still the primary means of interacting with data
• SQL expertise of users differ – some are more likely to want to use

a speech based-interface

4

Database
AdministratorsLay users

AnalystsNurse
Informaticists

C-suite
users

SQL Expertise

Natural Language
Interfaces (NLI)

SpeakQL
Regular console or
sophisticated tools

Low High

Why SQL as a target?

• We focus on the setting where the user does know SQL, but wants
to express it via speech
• Could potentially be extended to fuzzy settings but not our focus
• This is the focus of NLIs

5

Database
AdministratorsLay users

AnalystsNurse
Informaticists

C-suite
users

SQL Expertise

Natural Language
Interfaces (NLI)

SpeakQL
Regular console or
sophisticated tools

Low High

Formative Interview Study

• 26 SQL users from 17 sectors
• SQL users care about:

• Support for ad-hoc queries
• Unambiguous responses
• Anytime and anywhere access to data

• Typing on tablets/smartphones is painful!
• Can we dictate queries based on speech and touch capabilities of such

platforms?

• Sidebar: this study may potentially have been a bit biased towards the fact
that they wanted to showcase a need for their tool rather than them
trying to solve the most pressing need

6

Why not focus on truly fuzzy queries? Why SQL?

• SQL has several advantages that professionals find useful:
• Sophisticated query support
• Unambiguous grammar & succinctness
• Guarantee of result correctness

• If we accept truly fuzzy queries, we would:
• Need to deal with challenges understanding user intent

• General natural language understanding problem: AI-hard!

• With training, people can get really good at SQL: and if so, why not
empower them to use SQL on the go?

7

SpeakQL System Overview

SpeakQL is an open-domain, speech-driven multimodal
system that
• Supports a subset of regular SQL DML
• Uses an existing ASR and focuses on SQL-specific issues
• Supports any database schema in any application domain
• Supports interactive multimodal query correction with

screen display

8

9

1. Heterogeneity of
failures for ASR

Type of Errors Ground truth
token

ASR
transcription

Homophony
(Keywords to Literals)

sum some

Homophony
(Literals to Keywords)

fromdate from date

Splitting of numbers into
multiple tokens

45412 45000 412

Erroneously transcribed
dates

1991-05-07 may 07 90 91

Unbounded vocabulary for
Literals

CUSTID_1729A custody _ 1 7 2 9 8

oid_73fc or ID _ 7 3 f c

2. Unbounded vocabulary
problem

e.g. “CUSTID_1729A” split
into multiple tokens or
not recognized at all

Siri: “I’m sorry, I don’t
understand the question”

3. Real-time efficiency

SpeakQL Challenges

Key Insight: Decomposition of Problem

• SQL has Keywords,
Special Characters
(SplChar) & Literals (Attr
Names, Values, …)
• Determining everything

at one go is problematic

• What if we first determine
the structure using
Keywords and SplChars,
then “fill in” the Literals?

10

Type of Errors Ground truth
token

ASR
transcription

Homophony
(Keywords to Literals)

sum some

Homophony
(Literals to Keywords)

fromdate from date

Splitting of numbers into
multiple tokens

45412 45000 412

Erroneously transcribed
dates

1991-05-07 may 07 90 91

Unbounded vocabulary for
Literals

CUSTID_1729A custody _ 1 7 2 9 8

oid_73fc or ID _ 7 3 f c

SpeakQL: System Architecture

11

Spoken SQL
Query

Select Salary From
Employees Where
Name Equals John

ASR Output(s)

Select Sales From
Employers wear
name equals Jon

SQL Grammar
SplChar Handling

Select X1
From X2
Where
X3 = X4

Syntactically
Correct SQL

Structure Determination. Leverage rich structure of SQL (unambiguous CFG) to
get correctly recognized Keywords + Special Characters

Automatic
Speech

Recognition
(ASR) Engine

Structure
Determination

SpeakQL: System Architecture

12

Spoken SQL
Query

Select Salary From
Employees Where
Name Equals John

ASR Output(s)

Select Sales From
Employers wear
name equals Jon

SQL Grammar
SplChar Handling

Select X1
From X2
Where
X3 = X4

Syntactically
Correct SQL

Literal Determination. Leverage phonetic representation of database instances to fill in
literals using voting algorithm

Database Metadata

Phonetic Representation:
Table/attribute names
Attribute values

Filled Literal
Placeholders

Select Salary From
Employees Where
Name = “John”

Automatic
Speech

Recognition
(ASR) Engine

Structure
Determination

Literal Determination

This decoupling helps tackle the
unbounded vocabulary problem

SpeakQL: System Architecture

13

Spoken SQL
Query

Select Salary From
Employees Where
Name Equals John

ASR Output(s)

Select Sales From
Employers wear
name equals Jon

SQL Grammar
SplChar Handling

Select X1
From X2
Where
X3 = X4

Syntactically
Correct SQL

Interactive Display. User-in-the-loop query correction through speech or touch/click

Database Metadata

Phonetic Representation:
Table/attribute names
Attribute values

Filled Literal
PlaceholdersAutomatic

Speech
Recognition
(ASR) Engine

Structure
Determination

Literal Determination

Interactive Query Display

SQL
Keyboard

Clause Level
dictation

Interactive
Query Correction

Demo

• https://vimeo.com/295693078

14

Flow of Steps

• ASR
• Structure Determination
• Literal Identification
• Interactive Correction

15

ASR

• Custom language model: Azure’s Custom Speech Service
• Trained on a dataset of spoken SQL queries

• May end up with queries like
• “select sales from employers wear first name equals Jon”

16

Structure Determination

• Goal: obtain syntactically correct SQL with placeholders for literals
• E.g., select x1 from x2 where x3 = x4

• Similarity search algorithm on a weighted edit distance metric that
leverages the SQL CFG

• Focus: Select-Project-Join-Aggregate, with Limits and Order.
• Keywords: SELECT, FROM, …
• SplChars: < , *) > . …

17

Structure Determination II

• SplChars identified are replaced with operators, e.g., “less than” to “<”
• Anything not matching a keyword or SplChar is replaced by a

placeholder
• select sales from employers wear first name equals Jon - to
• SELECT x1 FROM x2 x3 x4 = x5

• This is then fed to the search engine that looks up a precomputed
index

18

Structure Determination II

• Offline index construction to look up queries like:
• SELECT x1 FROM x2 x3 x4 = x5

• Compute all SQL queries of up to length 50 tokens (= 1.6M queries)
• But searching each one is too expensive
• Thankfully, lots of redundancy!

• Many strings share prefixes
• Store 1 trie per length of query

• Search per trie
• (Sidebar: Not entirely clear why one trie per length is needed)

19

Structure Determination II

• Dynamic programming approach
• Find lowest edit distance for prefix of ASR query + prefix of each indexed SQL

query
• Store this as part of each “node” in your trie as you’re doing the search

• Natural substructure here

• Some additional nuances
• Different weights for keywords, …
• Some optimization/pruning techniques

20

Literal Identification

• Finds a ranked list of literals for each placeholder using the raw ASR
output and phonetic representations of the potential literals in the
database
• To get the phonetic representation for literals, we use Metaphone, a

phonetic algorithm

21

Literal Identification

• Restricts to potential candidates (attribute or table names)
• Edit distance between each spoken phrase and candidate
• Each candidate gets a “vote”
• Most voted on candidate wins!

22

Interactive Display
• Provides a single SQL query
• Can be fixed via speech and touch-based mechanisms
• Ambiguity widgets!
• Can re-dictate clauses or use a SQL-centric keyboard

23

Sidebar: Contrast to Datatone

• Q: How does this approach (structure à literals) compare to the
approach in Datatone?

24

Sidebar: Contrast to Datatone

• Q: How does this approach (structure à literals) compare to the
approach in Datatone?

• It’s actually the opposite approach!
• Datatone is bottom up, identifying attributes, filters, then determining

structure
• SpeakQL is top down, determining structure, then identifying

attributes, filters

25

Evaluation: Dataset & ASR

26

1. Generated 1250 textual SQL queries on Employees Database using CFG

2. Used Amazon Polly to obtain spoken SQL queries

Existing datasets are for NLI, not for this problem…

New Dataset for Spoken SQL. Using data generation procedure that is
scalable and applicable to arbitrary schema

For ASR: Azure’s Custom Speech API; (Training: 750, Testing: 500)

Evaluation: End-to-End Results

27

Keywords

0.88

Special
Characters

0.91

Literals

0.51

SpeakQL 0.98 0.98 0.82

Run time (in seconds)

Accuracy by F1
Score

Latency

Takeaway: SpeakQL corrects large fraction of errors over ASR

90% queries
run under 2s

CDF

Word

0.7

0.9

ASR

Takeaway: SpeakQL achieves near
real-time latency

Evaluation: User Study

28

Setup. 15 participants familiar with SQL; Each composed 12 queries on tablet

Query Set. Select-Project-Join-Aggregate queries

Tasks. (1) Use SpeakQL interface vs (2) Raw typing

Speedup in
Time

Mean 2.7x

Max 6.7x

Takeaway: SpeakQL help users speedup SQL specification time significantly

Results.

Summary

29

First end-to-end speech-driven multimodal system for querying with
SQL

Released the first dataset of spoken SQL queries

SpeakQL reduces query specification time (2.7x avg speedup) and
effort (10x avg reduction) compared to raw typing

Thoughts on paper?

• Writing?
• Approach?
• Evaluation?

30

Announcements

• Please talk to us to get feedback on projects!
• Alternate class time proposal

31

