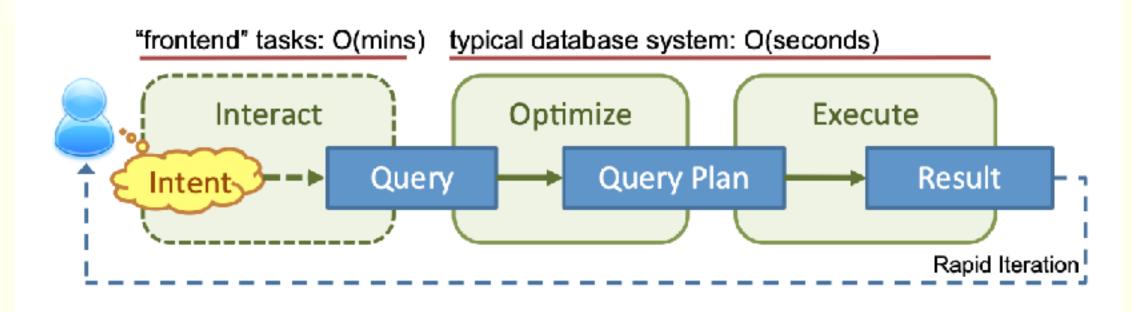

Interactive Browsing and Navigation in Relational Databases

Minsuk Kahng, Shamkant B. Navathe, John T. Stasko, and Duen Horng (Polo) Chau Presented in INFO 290T by Shreya Shankar

Join queries are ubiquitous but hard to write

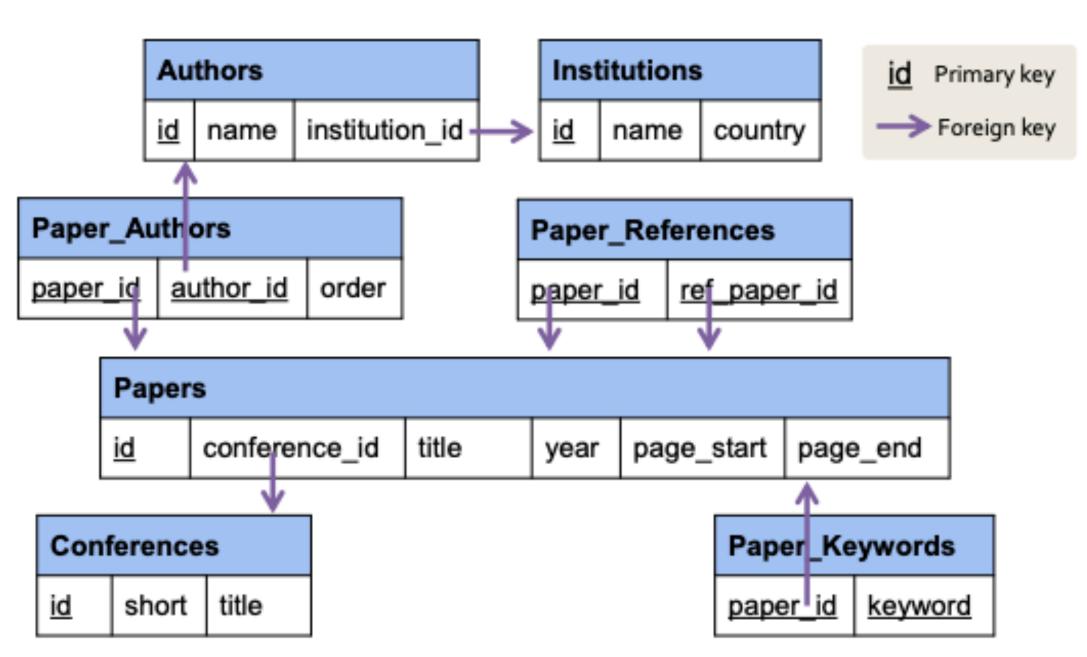
- Data is normalized in relational DBs, so many common queries require joins
- It's hard for nontechnical users to formulate join queries
- Typical visual query builders separate query construction from result presentation



Prior Work

- Query-By-Example systems date back to 1970s
 - Prioritized usability aspects of database systems, e.g., visual query builder (graphical interface)
 - Requires precise knowledge of schema
- Keyword search systems: simpler querying (via natural language) but lack interactivity
- Direct manipulation: tools are interactive (e.g., spreadsheets) but not designed for relational data
- Want: a tool that allows users who don't have knowledge of the schema to write queries that involve joins

Inspiration: Guided Interaction


- Guided Interaction (Nandi and Jagadish, VLDB 2011)
 - Humans directly manipulate data and iteratively build up their queries, spending
 most of their time understanding the data and schemas
 - But the database world view is: given a precise query, optimize & execute it
 - What if DBs could support guided interaction?
 - Enumerate valid interactions, show insights, etc

Background: Presentation Data Model

- How can users build intuition for their data via query results without having full awareness of the schema?
- Presentation Data Model: sits above logical & physical layers in the DB; users can browse entities and their relationships without writing SQL
- ETable: the authors' presentation data model that represents 1:M and M:M in an interactive table

ETable: Driving Example

this work, 7 relations in total.

Figure 3: The relational schema of the academic data set used in

Pape	S filtered by Pape	er_keyword	ls.keyword	like '%u	ser%' AND	Conferences.acronym :	sigmod'		
id 🗸	title 🗸	year 🗸	page_:v	page_	Conference acrony 🐦		Papers (referencing) titles	Papers (referenced) titles	Paper_keyw keywords
2575	Making database systems usable	2007	13	24	SIGMOD	H. V. Jaga, Adriane Ch, Aaron Elki, Magesh Jay, Yunyao Li 7	XRANK: Ran, NaLIX: an, DaNaLIX: a, Assisted q, Towards a 12	QueryViz:, Exploring, Efficient, Homebrew d, The intera 25	user inter fact, ger usability
2628	Addressing diverse user prefer…	2007	641	652	SIGMOD	Zhiyuan Ch, Tao 2 Li	Adaptive w, Enhanced w, Context-se, Automatic, Ordering t 10	Making dat, Supporting, Skimmer: r, Diversity, Efficient 13	informatio prefe…, da human fact algorithms
2701	Assisted querying using instan	2007	1156	1158	SIGMOD	Arnab Nand, H. V. Jaga 2		Predicting, The intera, FreeQ: an, Efficient, Location- a 8	query, key interface, autocomple inter

Figure 1: *ETable* integrates multiple relations into a single enriched table that helps users browse databases and interactively specify operators for building complex queries. This example presents a list of SIGMOD papers containing the keyword "user" from an academic paper database collected from DBLP and the ACM Digital Library. Each column represents either a base attribute of a paper or a set of relevant entities obtained from other tables (e.g., Conferences, Authors). If a relational database were used to obtain the same information, 9 tables would need to be joined, and the results produced can be hard to interpret because of many duplicated cells.

ETable

Papers fillered by Conferences.acronym = 'sigmod' AND Paper_keywords.keyword like '%user%'

id	~	title 🗸	year 👻	page_:**	ı page_∕❤	Conference acrony ♥		¥	Papers (referencing) titles	Papers titles
	2575	Making database systems usable	2007	13	24	SIGMOD	H. V. Jaga, Adrian Ch, Aaron Elki, Magesh Jay, Yunyao Li		 Filter Pivot Sort by Count Desc 	Query Explor Effici d, Ti
	2628	Addressing diverse user prefer…	2007	a	652 Click refere		Click cou	uni	Adaptive M., Inhance C Intext-set Click Automatic t	Making butto
	2701	Assisted querying using	2007	1156	1158	SIGMOD	<u>Arnab Nand</u> H. V. Jaga	2		Predio intera

Results for each of the three actions:

a	Aι	ut	h	ors	iltered b	y name = 'Arn	ab Nandi'							
	id		¥	name	~	Institutions name 🛛 😪	Papers titles							
	:	2852	9	Arnab	Nandi	Ohio State…	Effective,	The in	ntera,	SPIN:	sear,	TopChurn:,	Beyond	Bin

ETable

yViz:... oring... cient... The in ng dat

ra., F

Authors fillered by Papers.title = 'Making database..'

id 🗸	name 🗸 🗸	Institutions name 🛛 😪	Papers titles					
5848	Adriane Chapman	The MITRE	Why not, Efficient, Making dat, Provenance, TIMBER: A					
9971	Aaron Elkiss	University	Making dat					
17374	H. V. Jagadish	University	On Effecti, Approximat, DataLens:, WiseMarket, Effectiv					
17580	Magesh Jayapandian	University	Expressive, Making dat, Automating					
23226	Yunyao Li	IBM Almade	Selectivit, Facilitati, Gumshoe qu, Constructi, The Sys					
28529	Arnab Nandi	Ohio State	Effective, The intera, SPIN: sear, TopChurn:, Beyond Bi					
45677	Cong Yu	Google, Mo	Shallow In., Interactiv., Distribute., Recommenda., CloudDB					

C Authors filtered by Papers.Conferences.acronym like '%sigmod%' AND Papers.Paper_keywords.keyw

_		After prvoting	After aggregation	
i	d 🗸	name 🗸 🗸	Papers titles (filtered)	Institutions name
	17374	H. V. Jagadish	DataLens:…, Assisted q…, Making dat…, Skimmer: r… 4	University…
	28529	Arnab Nandi	Skimmer: r, Making dat, Assisted q 3	Ohio State…
	32723	Christopher Ré	Towards a, A demonstr 2	University

ETable Solution

- Presents results in one table with references to entities in cells
- Direct manipulation interface that iteratively constructs queries while a user interacts with the table
 - E.g., click on the author count button to project the author names
 - E.g., click pivot button to get a view of who wrote the most papers at SIGMOD with "user" in the title
- Rows represent entities and columns represent attributes or related entities

ETable: Typed Graph Model

- Secret sauce for how users can explore relations without knowing the schema
- Typed Graph Database: Relational schema and entities are preprocessed into database schema and database instance graphs
- Nodes are entities (and multi-valued & low-cardinality attributes), edges are relations

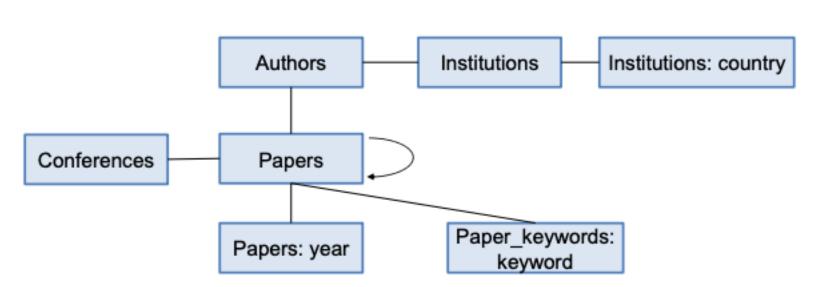


Figure 4: TGDB schema graph constructed from the relational schema in Figure 3. Each rectangle represents a node type, and each edge is an edge type.

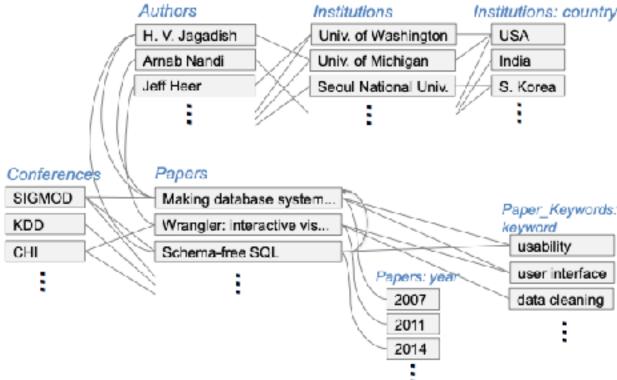


Figure 5: A part of the TGDB instance graph constructed from the academic data set used in this paper, following the schema in Figure 4. Node types shown in blue italic font.

ETable: Presentation Data Model

- Users first select specific elements of the schema and instance graphs (primary node, participating nodes, participating edges, selection conditions/filters)
 - This creates an initial query pattern
 - Users can apply selection, node addition, and node "shift focus" operators
- Query execution: extracts matched node instances from instance graph, then transforms result into an ETable

ETable: Presentation Data Model

Primitive Operators applied	Corresponding User-Lev
P1 Initiate("Conferences") Conferences P2 Select("acronym = 'SIGMOD")	U) Open("Conferences") Clicking "Conferences" table in default view lists all conferences • Conterences • Institute • Papers
Conferences acronym = 'SIGMOD' P3 Add("Papers") Conferences acronym = 'SIGMOD' Papers	U2 Seeall ("SIGMOD", "Papers") Clicking paper count at the end of the row for SIGMOD lists all SIGMOD papers Id acrony tull_name Pasers tull_stance Pasers z stornov z stornov Acre stornov Curulen: o., Shark: S0L., Parallel a., NESSIAII: n., Endexing (* 1660)
P4 Select("year > 2005") Conferences Papers acronym = 'SIGMOD' Papers year > 2005 P5 Add("Authors")	U3 Filter("year>2005") Opening the filter window and specifying a condition filters papers down to those published after 2005
Conferences Papers Authors acronym = 'SIGMOD' year > 2005	200 Filter rear Place Place 200 Place Place Place Place 200 Place Place Place 200 Place Place Place 200 Place Place Place
P6 Add("Institutions") Conferences Papers Authors Institutions acronym = 'SIGMCD' year > 2005	U4 Pivot("Authors") Papers stere Clicking pivot button groups authors and ranks them by paper count; Id edle The result shown at bottom right (Divesh Srivastava ranked first). 2711 Specifing starts to
P7 Select("country like "%Korea%") Conferences Papers Authors Institutions acronym = 'SIGMOD' year > 2005 country like '%Korea%'	Authors names
P8 Shift("Authors") Conferences Papers Authors Institutions acronym = 'SIGMOD' year > 2005	H. V. Jaga., T Filter Id V name Kian-Lee T., C 24 Pivot Clash to partie 30211 Hieu., Rong Zh Sort by Count Desc 25163 Nicholas E., Zacharynovich guergitie 12307

Figure 7: An example of incrementally building a complex query: find a list of researchers who have published papers at SIGMOD after 2005 and are currently working at institutions in Korea. Left: constructing the query through a series of ETable primitive operators. Right: corresponding user actions in the interface that invoke the operators (Section 6.1 describes the user-level actions in detail). User actions for the operators P6-P8, similar to the others shown in the figure, are omitted for brevity.

sponding User-Level Actions

0	n	f	9	n	8	n	С	θ	8	")	

Conferences

title

3221 Mining Frequent

Patterns witho.

3222 Data Mining on an

OLTP System.

Choose a table to start a query		id ~	acrony ~	full_name 🗸 🗸	Popera titles
Authors <u>Contecences</u>	•	1	kran	Knowledge Discovery and Data N.	Scale-out., The online., Optimizati., Predicting., One theme. 2248
Inditution Papers		2	SIGNOD	ACR SIGNOD Conference	Cumulon: c., Shark: SQL., Parallel a., NESSIAH: n., Indexing f., 1860

Papers Hered by Conferences.acronym = "SIGHOD"

SIGMOD", "Papers")

	at the end of the row SIGMOD papers	
tull_name 🛩	Papers titles	⇒
ALM SEGNOD	Cumulent o., Sharkt SOL., Parallel	

ar>2005')

Papers meretry Conferences.achoryn - 'SIGHOD' AND year > 2005

onference: Authors

Yiven Yin

Erik Riede., Christos

F., Gregory R.,, David

v titl

3 App

Min

✓ year

13 SIGMOD

vindow and specifying a condition to those published after 2005	id .	v	title v	year∿	page_~	Conference acrony **		Pope title
Fiters	2/1		speeding up search in peer- to	1496	1	SIGHOD	H. V. Jaga., Beng Chin., Kian-Lee T., Quang Hieu., Hong Inang S	P-ri n_,
+And Aut Central	271		Reconciling while tolerating d.	2996	13	SIGH00	Richolas E., Zachary S., 2	Ouer focu Prov

uthors")

uthors")	Pa	pe	S stered by Confe Before aggregation	rences.ac	nonya - '	SIGMOD, Y	U2 year > 2005 Before pivoting		
t button groups authors	ıd	¥	title v	year 🗸	page_∾	Conference acrony ♥		Papers (reference Utles	ed)
em by paper count; own at bottom right a <i>stava</i> ranked first).		2711	Speeding up search in peer- to	2396	1	SIGNOD	H. V. Jega., Beng Chin., Kian-Lee T., Queng Hieu., Rong Zhang 5	P-ring: en., P m., Loed-belar	
ult preserved at top right interpret transformation.		2712	Reconciling	2396	13	510400	Richolas 6., Zachary 5	Queryang dii, G 1 Expand	
Papers (ref	Αı	ith	After pivoling	ens . Confe	rences.ac		sigNOD' AND Papersiyear > fter oggregation	2005	
T Filter	Iđ	v	name 👻	Papera Utiles (fil	itaned)			~	name *
C 24 Pivot Risk to persee	2	231	Divest Scivestava	Automat	ic., Fusin	g dat., Kn	owiedge., I46: inter., Info	rwatio_ 25	AT&T Labs_
Sort by Count Desc Zachary movem space		163 307	Senucl Neddon Jonannes Genrke		-	-	ata menag ₋ , DigDensing-, Ho askit: pr., Pine-grain., So		

ETable: Architecture

- Interactive front-end in HTML, JS, and D3.js
- Application server in Python
- Postgres DB that stores TGDB schema and instance graphs in 4 relational tables: nodes, edges, node_types, edge_types

User Study

- 12 graduate students who had taken databases or had industry experience with databases
- 6 querying tasks: 1/3 finding attribute values, 1/3 filtering, 1/3 aggregation. 5 minutes per task
- Baseline: Navicat Query Builder (graphical interface)
- ETable is much faster, and users found it easy to use

Question	Avg.
1. Easy to learn	6.42
2. Easy to use	6.33
3. Helpful to locate and find specific data	6.25
4. Helpful to browse data stored in databases	6.67
5. Helpful to interpret and understand results	5.58
6. Helpful to know what type of information exists	6.00
7. Helpful to perform complex tasks	6.00
8. Felt confident when using ETable	5.92
9. Enjoyed using ETable	6.42
10. Would like to use software like ETable in the future	6.50

Table 3: Subjective ratings about ETable using 7-point Likert scales (7: Strongly Agreed. 1: Strongly Disagreed).

Future Work

- Improve expressiveness: support all relational algebra operators and more complex operations like set operations & complex aggregations
- Reuse intermediate results to improve query runtime
- Better suggestions for columns to display in the ETable