
DataPlay
Interactive Tweaking and Example-driven Correction of Graphical Database Queries

Azza Abouzied, Joseph Hellerstein, Avi Silberschatz
presented in INFO290T by Chirag Mangani

Inspiration

• Challenges in writing complex SQL queries, especially quantified queries.

• The natural human approach to specifying quantified queries through trial-and-error.

• Limitations of SQL in this context:

» no syntax locality

» absence of non-answers

Quantified Queries

Quantified queries look at groups of items in a database rather than single items. They check if the
whole group meets certain conditions, not just one item.

Real-Life Example

When buying flowers we might request a bouquet of “some red and white roses”
 But the florist puts together a bouquet that also has lilies and pink roses.

We are therefore accustomed to
specifying quantified queries by
trial-and-error.

Challenges of Quantified Queries

• What makes SQL challenging :
• Discourages Incremental Refinement (syntax locality problem)
• Lacks presentation of complete query effects (non-answers)

• Existing Solutions: Traditional SQL interfaces, command-line tools, basic visual query
builders.

• Identified Gaps: Lack of intuitiveness, no provision for direct feedback or interactive
correction, steep learning curves, and barriers for non-technical users.

Syntax Locality Problem

Existential Quantifier (At least one 'A')

SELECT * FROM student s, takes t

WHERE t.grade = ‘A’

AND t.student_id = s.id;

This query seeks any student who has
received at least one 'A' grade. It directly
correlates grade 'A' with the student,
without considering all grades

Universal Quantifier (All 'A’s)

SELECT * FROM student s, takes t

WHERE t.student_id = s.id AND s.id

NOT IN

(SELECT student_id FROM takes WHERE
grade != ‘A’);

Checks for students who received 'A's
in all subjects. Needs a subquery to
exclude students with any grade that
is not an ‘A’

Slight change in logical requirements, requires an extensive change in SQL Syntax

Need For Non-Answers

• Without non-answers, users might misinterpret the results of the queries

• Seeing 'Bill Withers' in both answers and non-answers clarifies he fits the 'at least one A'
category, not necessarily 'straight-A.'

Introducing DataPlay

Design philosophy: Simplifying query specification and debugging.

Key features:
• Construction of graphical queries from user constraints.

• Direct manipulation of graphical queries, enabling semantic refinement due to syntax
locality.

• Visual suggestions for query refinements.

• Interactive graphical history viewer.

https://dslam.cs.umd.edu/dataplay/DB/DataPlay_files/UIST-12.mov

Demo

Transforms relational database into a nested data tree

DataPlay: Pivot Interface

Data Model

Conceptual Foundation:

Simplifies the traditional relational model into a nested universal relation.
Restriction enhances interface efficiency despite reduced expressive power.

Nested Universal Table:

• Pivot-based approach integrates multiple database tables into one universal table, termed as
the "data tree."

• Transformation of any relational schema into a hierarchical data tree using a "keygraph"
method.

• No physical restructuring of the database required; an abstract view is generated instead.

Query Trees

Graphical Query Language

Query Trees:
• Specifically useful for Boolean conjunctive quantified queries.
• Overlays data trees with constraints, each node representing a relational query mapping

tuples to answers or non-answers.

Operational Symbols:
• ∀, ∋, f to signify different operations (universal, existential, functional) within nodes

Advantages Over Traditional SQL:
• Syntax locality maintained by requiring minimal changes for major query adjustments.
• Visually intuitive manipulation options guided by system suggestions, enhancing user

experience and exploration.
• Hierarchical representation mirrors the actual data structure, making it easier to understand

constraint dependencies.

Query Auto-Correction
Auto-Correction Feature
• Empowers users to mark tuples with 'want in,' 'want out,' 'keep in,' and 'keep out' for

answers and non-answers.
• Facilitates immediate query adjustments based on user input.

Working Mechanism:
• Generates all possible query trees by toggling parameters (quantifiers, coverage, constraints'

positions).
• Presents query trees that comply with user-defined tuple memberships.

Intuitive User Assistance:
• Visual previews of query tree implications.
• Comparative insights on different query trees with a 'diff' option.

Intelligent Suggestions Ranking:
• Prioritizes query trees causing minimal disturbance to current tuple memberships.
• Assumes users’ initial manual efforts are close to intended query structure.

DataPlay Interface Evaluation

Objective: Comparative study Direct Manipulation vs. Automated Query Correction.

Methodology:
• Participants: 13 database-savvy students.
• Procedure: Tutorial, hands-on session, and tasks involving fixing incorrect queries with

varying complexities.

Key Results:
• Query complexity significantly impacted task completion times.
• Direct manipulation was more efficient for simpler tasks.
• Auto-correction significantly improved performance for higher complexity tasks (especially

'3-tweaks' scenarios).

User Feedback:
• Both features rated highly useful, though preferences varied based on task complexity.
• Participants favored a mixed-initiative approach for optimal efficiency and ease.

Insights from User Study
Performance Insights:
• Auto-correction excels in complex scenarios, offloading cognitive demand from users.
• Direct manipulation offers quicker adjustments for experts or simpler queries.

User Preferences:
• Strong endorsement for a hybrid approach combining both features.
• Specific feedback called for improvements in the presentation of nested data and interaction

processes.

Comparative Success:
• DataPlay's effectiveness highlighted by successful complex query adjustments,

outperforming traditional SQL methods in similar tasks.

Takeaways and Future Work
Final Takeaways:
• The mixed-initiative interface is vital for catering to diverse complexities and user expertise

levels.
• Error Mitigation for complex queries

Future Work: DataPlay v2.0
• Interactive Query Correction with improved accuracy

• Scalable Visualizations allowing deeply-nested data trees

