
Lux: Always-on Visualization
Recommendations for Exploratory Dataframe
Workflows

1

Authors: Doris Jung-Lin Lee et al. at ISchool, UC Berkeley
Year: 2021-May

Code Repository at: https://github.com/lux-org/lux

Author Role Play: Mayank Sethi

Introduction & Inspiration

2

- EDA is an essential part of performing Data Science and Analytics task.
- This exploratory data science is further an iterative, trial-and-error process,

involving many interleaved stages of data cleaning, transformation, analysis, and
visualization. And >75% Data Scientists normally use DataFrame APIs like
Pandas for performing such operations.

Typical Data Science Lifecycle

Inspiration

3

- But Visualizing dataframes is an unwieldy and error-prone process, adding
substantial friction to the fluid, iterative process of data science.

Reasons:
a. Cumbersome Boilerplate Code

- Substantial load is necessary to generate visualizations that users have to
context-switch: thinking about data operations and visual elements.

- Consequence: Barriers hinder exploration and users often visualize during
the late stages of workflow rather than experimenting.

b. Challenges in Determining Next Steps.
- The many choices of the many combinations make it hard to determine what

visualization to generate to advance analysis, and automated assistance is
not provided.

Proposed Solution

4

- The authors introduce Lux, a seamless extension to pandas that retains its powerful API,
but enhances the tabular outputs with automatically-generated visualizations
highlighting interesting patterns and suggesting next steps for analysis.

- It has monthly downloads around 9k (with a total of 62k downloads), and over 3.1k stars
on Github, as of November 2021.

Interesting fact about Lux
- Lux was started as an initiative by a Phd student Dorris Lee

at Information School, Berkeley with efforts from Marti
Hearst and Dr. Aditya. The initiative got funded by top
VCs like Lightspeed Partners, and is currently part of a
company called Ponder run by the professors.

Congratulations !!⩭⩭
To the team of PONDER

5

Contributions
1. A novel, always-on framework that provides visualizations for the

dataframe as it stands at any point in the workflow.
- This multi-tiered dataframe interaction framework supports pandas’ 600+ operators without

compromising the ease and flexibility of data transformation and analysis.

2. An expressive and succinct intent language powered by a formal, algebra
that allows users to specify their fuzzy intent at a high level.

- It allows users to create one or more visualizations but also flexibly indicate their high-level analysis interest,
without worrying about how the data elements map onto aspects of the visualization.

3. A novel recommendation system that uses automatically extracted
information about dataframes to infer the appropriate visualizations.

- Lux is one of the first of such systems that is designed to fit into a programmatic dataframe workflow.

6

Approach

1. Lux draws insights from Visualization Recommendation (VisRec)
- Interactive GUI-based tools like Tableau are not widely used by data scientists due to their lack of

customizability and integration with the data science workflow. Lux takes recommendation principles
from this literature and explores how visualization recommendations can support a dataframe workflow.

2. Lux is built on top of imperative and declarative frameworks for
Visualization Specification.

- It synthesizes visualization code to enable users to customize as needed like defining axes, labels, etc.
- Lux’s intent language reduces the specification burden on users, allowing them to provide lightweight

intent as opposed to writing long code fragments for visualization.

3. Visual Data Exploration with Dataframes
- Lux lowers the barrier to visualizing dataframes by adopting an always-on approach so that dataframe

visualizations are always recommended to users at all times, unlike pandasgui.

7

Demonstration

Overview Video:

Demonstration: https://github.com/lux-org/lux

8

Lux JupyterCon2020 Lightning Talk

https://www.youtube.com/watch?v=qmnYP-LmbNU

Framework for DF Interaction

9

In Lux’s always-on framework, users inspect a
dashboard of recommended visualizations, as
part of a multi-tiered framework (blue), all of
which is driven by a user- or system specified
intent(orange)

Intent: Users can indicate aspects of the DF that
they are interested in via a lightweight intent
specification

Grammar behind Intent
The intent language is a lightweight, succinct means for users to declaratively
specify their high-level interests.

10

Benefits:
Versatility: It serves both as a mechanism for steering recommendations and as a way of directly
creating visualizations on top of dataframes.

Convenience: Minimalistic language design is intended to alleviate the common challenge in
exploratory analysis where users struggle to translate their high-level data questions to exact
visualization specifications

Specifying Intent to Dataframe

Attaching Intent to DF

11

Constructing Visualizations

Searching across attribute space

Specification Comparison

12

System generated Recommendation

We can attach an intent to a dataframe, or this intent can be
programmatically generated as part of Lux’s recommendations.

Programmatically, two types can be there:

1. Structure-based recommendations.
- The dataframe “structure” reveals strong signals for what the users subsequently choose to visualize,

thus providing implicit information on what recommendations to display automatically by Lux

2. History-based recommendations.
- Lux displays history-based recommendations based on whether the dataframe has been filtered or

aggregated in its recent history

13

System Architecture

14

1. A client-server model.
2. LuxDataFrame: a wrapper around

pandas, and supports all pandas operations,
while storing additional information, such
as the intent, metadata, structure, and
history, for generating visual
recommendations.

3. Design is modular and extensible so that
alternatives can be swapped in at different
layers, e.g., Altair and Matplotlib
visualization rendering libraries.

Execution & Optimization

1. Metadata Computation
a. It includes attribute level statistics and data types. The statistics include the list

of unique values, cardinality, and min/max values for each attribute

2. Visualization Processing
a. Execution engine translates each visualization to queries responsible for processing

the data required for the visualizations. It is time consuming so techniques are
followed like below.

3. Workflow Based Optimizations(WFLOW)
a. Lazily compute the metadata and recommendations when users explicitly print data.
b. cache and reuse results later on in the session.

15

Execution & Optimization

4. Approximate Pruning of Search Space (PRUNE)

a. Each visualization in an action is ranked based on a scoring function, computed based on the data
associated with each visualization.

b. Approximate query processing to reduce the cost by estimating the scores using sampled data
c. Optimization only performed when:.

where texact and tapprox are the cost of computing the exact and approximate scores.

5. Cost Based Scheduling of Actions (ASYNC)

a. Scheduling the cheapest action to compute first, followed by computing the remaining in the background.
b. The async optimization provides users with early results and returns interactive control back to the user,

instead of incurring a high wait time during their analysis session

16

Contributions and Impact
- The idea of exploiting asynchronous execution during user wait time has been

well-established but it is the first to apply this technique in a visualization
recommendation context.

- Lazy computation and caching and reuse are well-studied but
identifying usage patterns and determining to expire metadata are novel.

- Leveraging cost estimates to prioritize cheaper-to-compute
visualizations is also novel.

- The cost model across different visualization types is an independent
valuable contribution.

-
17

Performance Evaluation

18

Datasets

Airbnb(12 columns) and Community dataset(128 columns)

Field Study and Evaluation

- Study did with Industry Data Scientists, 3 participants.
- Reviews:

it really helps speed up my exploratory analysis. If not, it will take me
forever to go through these many variables

Summary:
1. Average System Usability Scale (SUS) score across participants is 70/100.
2. All three participants were interested in continuing to use Lux in their data science

work
3. Participants are still attached to their existing visualization tool for this functionality.
4. Concerns around customizability and the inability to express their desired

visualizations, need for improving the flexibility of the intent language.

19

