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The Next Step in Querying Large Datasets?

When tables can’t fit in memory (e.g., 100s of
millions of tuples satisfy a predicate in a SOL query),
queries cannot have interactive latencies

SELECT AVG(SessionTime) FROM Sessions
WHERE City = “New York’

How to execute such queries accurately within
seconds?

Demo: https://youtu.be/6 IFUAJxmMOU?
si=yZVsxZyba KCOcok (4:06)



https://youtu.be/6_lFUAJxm0U?si=yZVsxZyba_KC0cok
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Existing Ways to Query Large Datasets
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Existing Ways to Query Large Datasets

o Approximation techniques rely on sampling
e Existing approximation techniques either:

e OLA: Make no assumptions about workloads — this gives inaccurate answers
for groups with little support

SELECT AVG(SessionTime) FROM Sessions WHERE City =
SOME TINY TOWN

 Make very strict assumptions about workloads — this doesn’t support queries
that aren’t encompassed by the workload

SELECT AVG(SessionTime) FROM Sessions WHERE City = “New
York City” OR City = “San Francisco” ..
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Target Workload

Ad-hoc queries with real-time latency
Columns queried together are pretty stable over time

Skewed & high-dimensional data
UDFs?



Blink DB

e Analytics system built on top of Hadoop

o Allows users to trade off accuracy for response time ——

SELECT COUNT(*) FROM Sessions WHERE S ] e
Genre = ‘western’ GROUP BY 0OS ERROR . \
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SELECT COUNT(*) FROM Sessions WHERE ) B T
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SECONDS
Figure 3. BlinkDB architecture.

o Step 1: Offline sample creation step

o Step 2: Online sample selection step



Step 1: Sample Creation

e Given a workload of queries, how do we choose which samples of data to
store?

o Stratified sampling: sample from each subset or subgroup of data, to
cover rare subgroups

e Bounded storage overhead
e Don't overtit to historical queries

e Solve an optimization problem to find which sets of columns to build
stratified samples on



Step 1: Sample Creation

e Predictable Queries, Predictable Query Predicates, Predictable Query
Column Sets (QCS), Unpredictable Queries

Flexibility
Low flexibility / Effic i High flexibility /
High Efficiency -—ncy Low Efficiency
Predictable Predictable Predictable Unpredictable
Queries Query Query Queries
Predicates Column Sets

Figure 1. Taxonomy of workload models.

e “Surprisingly, over 90% of queries are covered by 10% and 20% of unique
QCSs in the traces from Conviva and Facebook respectively”



Step 1: Sample Creation

o Predictable Queries, Predictable Query Predicates, Predictable Query Column
Sets (QCS), Unpredictable Queries

SELECT AVG(Salary) WHERE City = “New York”™
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QP: City = "New York”
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Figure 1. Taxonomy of workload models.



Step 1: Sample Creation

o Stratified sampling: allows us to ensure that rare groups are appropriately
represented in the sample

e Approach idea k )_\

¢ Fiﬂd OH diStiﬂCt grOU pS 8' com pUte their COU ﬂtS Figure 4. Example of a stratified sample associated with a set

of columns, ¢.

e Sample uniformly (with a cap) from within each group
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Step 1: Sample Creation

o Stratified sampling: allows us to ensure that rare groups are appropriately
represented in the sample

o lumns, 2/ mpl -

n columns, 2*n samples i

TABLE random

Sess.Genre OS City URL samples

(City)

Family of

\j . stratified

= samples

on {City}

Query Templates
City 30% (05, URL) |

Genre 25% Family of

“Genre AND City | 18% stratified

URL 15% samples
OSAND URL [ 12% _ on {O5,URL}

Figure 2: An example showing the samples for a table with five
columns, and a given query workload.
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Step 1: Sample Creation

e Optimization problem: create samples for a set of queries that share QCS

e Why is this hard?

e For each query, we read a variable # rows (n) to satisfy user bounds

e [hus we need access to a family of stratified samples, one for each
possible value of n

e Solution: choose set of samples that prioritize sparsity, data distribution
(QCS likely to appear in future), and storage costs
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Step 2: Sample Selection

e (Given our samples created from step 1, whenever we receive a query Q,
which samples do we use to evaluate Q7

e Depends on:

e Set of columns in Q: pick stratified sample that has a superset of
columns in Q if possible, else

o Selectivity of Q: pick sample(s) with high selectivity (i.e., number of rows
in the selection / number of rows in the sample is high). This lowers the
error margin.
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Step 2: Sample Selection

e Given the samples, what's the smallest size we can read to meet user
constraints on latency or accuracy?

e Error Latency Profile (ELP): estimates error and response time on each
sample:

e Using very small samples, collect data on query selectivity, variance,
standard deviation, etc.

e Assume latency scales linearly with size of input

e Assume variance is proportional to 1/n (sample size)
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Implementation and Evaluation

e Used Conviva (17TB) and TPC-H (1TB) datasets

e 100 ECZ2 instances, each with 8 cores, 68 GB RAM, & 800 GB disk

e Query log =19k queries. Did offline sample creation on 200 queries

BlinkDB Query Interface

Hive Query Engine

Uncertainty Propagation | Sample Selection

Shark
Hadoop (Hive on Spark)
MapReduce
Spark

BlinkDB
Metastore

Sample Creation and Maintenance

Hadoop Distributed File System

(HDFS)

Figure 7. BlinkDB’s Implementation Stack
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15



Multi-Column Stratifying

Restricted sample selection optimization problem to stratify on no more
than 3 columns (for solver speed)

Using multi-column samples allows us to execute queries faster
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Figureg. 9(a) and 9(b) compare the average statistical error per QCS when running a query with fixed time budget of 10 seconds
for various sets of samples. 9(c) compares the rates of error convergence with respect to time for various sets of samples.
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Future Work

e How to support aggregation functions beyond COUNT, SUM, QUANTILE,
AVG and complex queries like JOINs? UDFs?

e How to support this when the underlying data changes (i.e., new tuples are
added to the dataset)?
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