
Sameer Agarwal , Barzan Mozafari, Aurojit Panda, Henry Milner, Samuel Madden, Ion Stoica 
Presented by Shreya Shankar for INFO 290T Fall 2023

BlinkDB: Queries with Bounded Errors and 
Bounded Response Times on Very Large 

Data

1



The Next Step in Querying Large Datasets?

2

When tables can’t fit in memory (e.g., 100s of 
millions of tuples satisfy a predicate in a SQL query), 
queries cannot have interactive latencies 

SELECT AVG(SessionTime) FROM Sessions 
WHERE City = ‘New York’ 

How to execute such queries accurately within 
seconds? 

Demo: https://youtu.be/6_lFUAJxm0U?
si=yZVsxZyba_KC0cok (4:06)

https://youtu.be/6_lFUAJxm0U?si=yZVsxZyba_KC0cok
https://youtu.be/6_lFUAJxm0U?si=yZVsxZyba_KC0cok
https://youtu.be/6_lFUAJxm0U?si=yZVsxZyba_KC0cok


Existing Ways to Query Large Datasets

3

OLA: variable 
performance, 
can’t provide 
error bars

Sketching & Sampling: 
low space & time 
complexity, but can’t do 
queries outside the 
workload

General Efficient



Existing Ways to Query Large Datasets

4

• Approximation techniques rely on sampling 

• Existing approximation techniques either: 

• OLA: Make no assumptions about workloads — this gives inaccurate answers 
for groups with little support 

SELECT AVG(SessionTime) FROM Sessions WHERE City = 
SOME_TINY_TOWN 

• Make very strict assumptions about workloads — this doesn’t support queries 
that aren’t encompassed by the workload 

SELECT AVG(SessionTime) FROM Sessions WHERE City = “New 
York City” OR City = “San Francisco” …



Target Workload

5

• Ad-hoc queries with real-time latency 

• Columns queried together are pretty stable over time 

• Skewed & high-dimensional data 

• UDFs?



Blink DB

6

• Analytics system built on top of Hadoop 

• Allows users to trade off accuracy for response time 

SELECT COUNT(*) FROM Sessions WHERE 
Genre = ‘western’ GROUP BY OS ERROR 
WITHIN 10% AT CONFIDENCE 95% 

SELECT COUNT(*) FROM Sessions WHERE 
Genre = ‘western’ GROUP BY OS WITHIN 5 
SECONDS 

• Step 1: Offline sample creation step 

• Step 2: Online sample selection step



Step 1: Sample Creation

7

• Given a workload of queries, how do we choose which samples of data to 
store? 

• Stratified sampling: sample from each subset or subgroup of data, to 
cover rare subgroups 

• Bounded storage overhead 

• Don’t overfit to historical queries 

• Solve an optimization problem to find which sets of columns to build 
stratified samples on



Step 1: Sample Creation

8

• Predictable Queries, Predictable Query Predicates, Predictable Query 
Column Sets (QCS), Unpredictable Queries 

• “Surprisingly, over 90% of queries are covered by 10% and 20% of unique 
QCSs in the traces from Conviva and Facebook respectively”



Step 1: Sample Creation

9

• Predictable Queries, Predictable Query Predicates, Predictable Query Column 
Sets (QCS), Unpredictable Queries 

SELECT AVG(Salary) WHERE City = “New York” 

Q: whole query 

QP: City = “New York” 

QCS: City



Step 1: Sample Creation

10

• Stratified sampling: allows us to ensure that rare groups are appropriately 
represented in the sample 

• Approach idea 

• Find all distinct groups & compute their counts 

• Sample uniformly (with a cap) from within each group 



Step 1: Sample Creation

11

• Stratified sampling: allows us to ensure that rare groups are appropriately 
represented in the sample 

• n columns, 2^n samples



Step 1: Sample Creation

12

• Optimization problem: create samples for a set of queries that share QCS 

• Why is this hard? 

• For each query, we read a variable # rows (n) to satisfy user bounds 

• Thus we need access to a family of stratified samples, one for each 
possible value of n 

• Solution: choose set of samples that prioritize sparsity, data distribution 
(QCS likely to appear in future), and storage costs



Step 2: Sample Selection

13

• Given our samples created from step 1, whenever we receive a query Q, 
which samples do we use to evaluate Q? 

• Depends on: 

• Set of columns in Q: pick stratified sample that has a superset of 
columns in Q if possible, else 

• Selectivity of Q: pick sample(s) with high selectivity (i.e., number of rows 
in the selection / number of rows in the sample is high). This lowers the 
error margin.



Step 2: Sample Selection

14

• Given the samples, what’s the smallest size we can read to meet user 
constraints on latency or accuracy? 

• Error Latency Profile (ELP): estimates error and response time on each 
sample: 

• Using very small samples, collect data on query selectivity, variance, 
standard deviation, etc. 

• Assume latency scales linearly with size of input 

• Assume variance is proportional to 1/n (sample size)



Implementation and Evaluation

15

• Used Conviva (17TB) and TPC-H (1TB) datasets 

• 100 EC2 instances, each with 8 cores, 68 GB RAM, & 800 GB disk 

• Query log = 19k queries. Did offline sample creation on 200 queries



Multi-Column Stratifying

16

• Restricted sample selection optimization problem to stratify on no more 
than 3 columns (for solver speed) 

• Using multi-column samples allows us to execute queries faster



Future Work

17

• How to support aggregation functions beyond COUNT, SUM, QUANTILE, 
AVG and complex queries like JOINs? UDFs? 

• How to support this when the underlying data changes (i.e., new tuples are 
added to the dataset)?


