BlinkDB: Queries with Bounded Errors and

Bounded Response [imes on Very Large
Data

Sameer Agarwal , Barzan Mozafari, Aurojit Panda, Henry Milner, Samuel Madden, lon Stoica
Presented by Shreya Shankar for INFO 290T Fall 2023



The Next Step in Querying Large Datasets?

When tables can’t fit in memory (e.g., 100s of
millions of tuples satisfy a predicate in a SOL query),
queries cannot have interactive latencies

SELECT AVG(SessionTime) FROM Sessions
WHERE City = “New York’

How to execute such queries accurately within
seconds?

Demo: https://youtu.be/6 IFUAJxmMOU?
si=yZVsxZyba KCOcok (4:06)



https://youtu.be/6_lFUAJxm0U?si=yZVsxZyba_KC0cok
https://youtu.be/6_lFUAJxm0U?si=yZVsxZyba_KC0cok
https://youtu.be/6_lFUAJxm0U?si=yZVsxZyba_KC0cok

Existing Ways to Query Large Datasets

General

Efficient

ﬁ

OLA: variable
performance,
can’t provide
error bars

Sketching & Sampling:
low space & time
complexity, but can’t do
queries outside the
workload



Existing Ways to Query Large Datasets

o Approximation techniques rely on sampling
e Existing approximation techniques either:

e OLA: Make no assumptions about workloads — this gives inaccurate answers
for groups with little support

SELECT AVG(SessionTime) FROM Sessions WHERE City =
SOME TINY TOWN

 Make very strict assumptions about workloads — this doesn’t support queries
that aren’t encompassed by the workload

SELECT AVG(SessionTime) FROM Sessions WHERE City = “New
York City” OR City = “San Francisco” ..

L



Target Workload

Ad-hoc queries with real-time latency
Columns queried together are pretty stable over time

Skewed & high-dimensional data
UDFs?



Blink DB

e Analytics system built on top of Hadoop

o Allows users to trade off accuracy for response time ——

SELECT COUNT(*) FROM Sessions WHERE S ] e
Genre = ‘western’ GROUP BY 0OS ERROR . \

WITHIN 10% AT CONFIDENCE 95% - 2 —

SELECT COUNT(*) FROM Sessions WHERE ) B T
Genre = ‘western’ GROUP BY 0S5 WITHIN 5 ——‘<g>£@m [m@;gg

SECONDS
Figure 3. BlinkDB architecture.

o Step 1: Offline sample creation step

o Step 2: Online sample selection step



Step 1: Sample Creation

e Given a workload of queries, how do we choose which samples of data to
store?

o Stratified sampling: sample from each subset or subgroup of data, to
cover rare subgroups

e Bounded storage overhead
e Don't overtit to historical queries

e Solve an optimization problem to find which sets of columns to build
stratified samples on



Step 1: Sample Creation

e Predictable Queries, Predictable Query Predicates, Predictable Query
Column Sets (QCS), Unpredictable Queries

Flexibility
Low flexibility / Effic i High flexibility /
High Efficiency -—ncy Low Efficiency
Predictable Predictable Predictable Unpredictable
Queries Query Query Queries
Predicates Column Sets

Figure 1. Taxonomy of workload models.

e “Surprisingly, over 90% of queries are covered by 10% and 20% of unique
QCSs in the traces from Conviva and Facebook respectively”



Step 1: Sample Creation

o Predictable Queries, Predictable Query Predicates, Predictable Query Column
Sets (QCS), Unpredictable Queries

SELECT AVG(Salary) WHERE City = “New York”™

ex
Low flexibility / , High flexibility /
Q W h O | o q uer y High Efficiency (Efﬁ CCCCC y Low Efficiency
Predictable Predictable Predictable Un p edictable
Queries Query Query Que
Predicate Column Set

QP: City = "New York”
QCS: City

Figure 1. Taxonomy of workload models.



Step 1: Sample Creation

o Stratified sampling: allows us to ensure that rare groups are appropriately
represented in the sample

e Approach idea k )_\

¢ Fiﬂd OH diStiﬂCt grOU pS 8' com pUte their COU ﬂtS Figure 4. Example of a stratified sample associated with a set

of columns, ¢.

e Sample uniformly (with a cap) from within each group

10



Step 1: Sample Creation

o Stratified sampling: allows us to ensure that rare groups are appropriately
represented in the sample

o lumns, 2/ mpl -

n columns, 2*n samples i

TABLE random

Sess.Genre OS City URL samples

(City)

Family of

\j . stratified

= samples

on {City}

Query Templates
City 30% (05, URL) |

Genre 25% Family of

“Genre AND City | 18% stratified

URL 15% samples
OSAND URL [ 12% _ on {O5,URL}

Figure 2: An example showing the samples for a table with five
columns, and a given query workload.

i



Step 1: Sample Creation

e Optimization problem: create samples for a set of queries that share QCS

e Why is this hard?

e For each query, we read a variable # rows (n) to satisfy user bounds

e [hus we need access to a family of stratified samples, one for each
possible value of n

e Solution: choose set of samples that prioritize sparsity, data distribution
(QCS likely to appear in future), and storage costs

12



Step 2: Sample Selection

e (Given our samples created from step 1, whenever we receive a query Q,
which samples do we use to evaluate Q7

e Depends on:

e Set of columns in Q: pick stratified sample that has a superset of
columns in Q if possible, else

o Selectivity of Q: pick sample(s) with high selectivity (i.e., number of rows
in the selection / number of rows in the sample is high). This lowers the
error margin.

13



Step 2: Sample Selection

e Given the samples, what's the smallest size we can read to meet user
constraints on latency or accuracy?

e Error Latency Profile (ELP): estimates error and response time on each
sample:

e Using very small samples, collect data on query selectivity, variance,
standard deviation, etc.

e Assume latency scales linearly with size of input

e Assume variance is proportional to 1/n (sample size)

14



Implementation and Evaluation

e Used Conviva (17TB) and TPC-H (1TB) datasets

e 100 ECZ2 instances, each with 8 cores, 68 GB RAM, & 800 GB disk

e Query log =19k queries. Did offline sample creation on 200 queries

BlinkDB Query Interface

Hive Query Engine

Uncertainty Propagation | Sample Selection

Shark
Hadoop (Hive on Spark)
MapReduce
Spark

BlinkDB
Metastore

Sample Creation and Maintenance

Hadoop Distributed File System

(HDFS)

Figure 7. BlinkDB’s Implementation Stack

Hive
Hwe on Spar-< ( vnthout cac hlngv LZZI3

ice Time

(

Query Ser

Input Data Size (1B)

(c) BlinkDB Vs. No Sampling

15



Multi-Column Stratifying

Restricted sample selection optimization problem to stratify on no more
than 3 columns (for solver speed)

Using multi-column samples allows us to execute queries faster

10

e 11 ¢ 10000
X £ Unisf_orrrlw S(a:mlmples — QU £ _ Ungprnlw Sgrrlmples — Uniform Samples +—+—
>N ok ingle Column Ymaas Nk ingle Column Yamns : —o—
L 8 F Multi-Column  aeG— — 9 F Multi-Column  sssG— ~ 1000 Single Column
I S o [ Multi-Column
E T - E T = c ,
w6 ¢ : ; w7 - S 100
TU 5 :F : we ' TU O ; <} [ l: 3 :
= : H = . f ’E [ _ Pt 10 ¢
w ‘ E . i L E - E
© O F : ® 4 F : = R ——
c . = l — . - S ———————
Hal " N 1" als |
L ‘E - I
Lo e e e e . ‘o e e 01 | | J
QLS LS/ QLSS QLS4 QCS5 QLS LS/ QLSS QCS4 QCS5 QCLSH6 : ) ) o ) o ‘
16) (10! (1) (12) 1) r - 3 (7 D (1) 0O 5 10 15 20 25 30 35
Unique QCS Unique QCS Statistical Error (%)
(a) Error Comparison (Conviva) (b) Error Comparison (TPC-H) (c) Error Convergence (Conviva)

Figureg. 9(a) and 9(b) compare the average statistical error per QCS when running a query with fixed time budget of 10 seconds
for various sets of samples. 9(c) compares the rates of error convergence with respect to time for various sets of samples.

16



Future Work

e How to support aggregation functions beyond COUNT, SUM, QUANTILE,
AVG and complex queries like JOINs? UDFs?

e How to support this when the underlying data changes (i.e., new tuples are
added to the dataset)?

17



