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Problem - Interactivity

e Queries take time to execute
e Long running queries can break the interactivity of a dataset
e >5 second query latency = loss of focus
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Background - AQP

e Approximate Query Processing

Instead of scanning all the data associated with a query, generate an approximate answer
based on a subset of the data

Helps preserve interactivity

Generally uses a random/stratified sample of data

Trades off accuracy for increased speed

Bootstraps a confidence interval

Related in-class papers: BlinkDB, Pangloss, Sample+Seek
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Histogram Query over 5M rows Approximate Query over 10k rows
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Background - Aggressive Precomputation

Precompute data in anticipation of queries
Typically stored in data cubes

Requires large amounts of computation time
Requires large amounts of storage

Hard to predict what to precompute
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An Analytical Workspace Cube
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Solution - AQP++

e Combine AQP with aggressive precomputation to deliver higher quality approximations
e Allows connecting AQP and its high interactivity with already existing precomputations in
data warehouses
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But how do we know what to precompute?

e Can’t pre-compute everything

e Query space is large - brute forcing pre-computations is impractical

e User specifies a guery template of the aggregation they intend to use on the dataset and
what conditional variables exist ARSIk O
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Prefix Cube

e Each element of the data cube stores a prefix of the aggregation for the preceding

elements in its domain
e Lower complexity even more with a blocked prefix cube

e Whiteboard time
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Blocked Prefix Cube

e Blocked prefix cubes lower complexity by lowering the amount of elements per axis
e But how do we figure out where our blocks should be?
o Uniform blocks are not optimal. More blocks should be allocated to the “interesting”
parts of the data
o Not all dimensions should have the same number of blocks
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Binary Search

AQP++ generates error profiles that measure how changing the number of possible blocks
per dimension changes the possible query template error

Uses binary search on those error profiles to figure out how many blocks it should allocate
to each dimension to minimize error within the space budget provided
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Figure 6: An illustration of the binary search algorithm to
search for the BP-Cube’s shape k; X k; (suppose k = 500).
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Hill Climbing

e AQP++ uses hill climbing to figure out where to partition blocks for each dimension
e Modifies one partition on an initial, uniform cube to see if that decreases error
e Erroris calculated by finding the upper bound of query template error

o Can be found in linear time!

e Stops when no adjustment from the current cube will decrease error
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Now that we have these precomputations...

...how do we use them with queries?




Aggregate Identification

e Identify candidate aggregate values, blocks that contain some part of the query space we
want

pP- = { SUM(6:15,5:12), SUM({11:15,5: 12)
| ¢ | ¢ SUM(6:20,5:12), SUM(11:20,5: 12)
7 bemeeck : : SUM{6:15,9:12), SUM(11:15,9:12)
| | SUM(6:20,9:12), SUM(11:20,9:12),
Cy SUM{6:15,5:16). SUM(11:15,5:16),
| 1 ! SUM(6:20,5:16). SUM(11:20,5: 16),
14 ' : SUM(6:15,9:16), SUM(11:15,9:16),
SUM(6:20,9: 16), SUM(11:20,9: 16), 0)

q=SUM(8:18,7:14)
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Aggregate Identification

e Use AQP to compute the user’s query Q(S)
e For each candidate precomputation Pre(D):
o Compute what AQP would output if used to do the precomputation p(S)
o Return a candidate query result in the form Pre(D) + (Q(S) - p(S))
e Pick the query result with the best confidence interval ! Delta
o Calculated from subsamples of the AQP sample
e Edge cases
o If no precomputations can possibly help, there will be no candidates and AQP++ will
fall back to just AQP
o If there is no delta, then the precomputation exactly matches the user query and an
exact result can be returned.
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Impact
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Limitations and Extensions

e More supported aggregations (ie. how do you combine the medians of
2 blocks?)

Group-by queries (essentially treated as axes)

How to efficiently handle updates

How to handle space needs for sampling and BP-cubes

How to handle space needs for multiple query templates




Questions?




