AQP++

Connecting Approximate Query Processing With
Aggregate Precomputation

Rohit Mittal INFO 290T

Problem - Interactivity

e Queries take time to execute
e Long running queries can break the interactivity of a dataset
e >5 second query latency = loss of focus

Berkeley

UNIVERSITY OF CALIFORNIA

Background - AQP

e Approximate Query Processing

Instead of scanning all the data associated with a query, generate an approximate answer
based on a subset of the data

Helps preserve interactivity

Generally uses a random/stratified sample of data

Trades off accuracy for increased speed

Bootstraps a confidence interval

Related in-class papers: BlinkDB, Pangloss, Sample+Seek

Berkeley

UNIVERSITY OF CALIFORNIA

Histogram Query over 5M rows Approximate Query over 10k rows

le6 le6
2.00 A
1.75 A =
1.50 A
1.25 A .

1.00 A

0.75 A

0.50

0.00 0.25 0.50 0.75 1.00 125 150 175 0.00 -
le6 0.00 0.25 0.50 0.75 1.00 1.25 1.50 175

le6

Berkeley

UNIVERSITY OF CALIFORNIA

Background - Aggressive Precomputation

Precompute data in anticipation of queries
Typically stored in data cubes

Requires large amounts of computation time
Requires large amounts of storage

Hard to predict what to precompute

Berkeley

UNIVERSITY OF CALIFORNIA

An Analytical Workspace Cube

All Customers / / / SELECT COUNT(J‘)
_ AbigailRuddy / /= & ; a0 FROM WORKSPACE
CRsiomer Abner Kemny T WHERE CUSTOMER = “Fred Smith’
oo AND PRODUCT = “40G Drive”
AND TIME >= JANOS

4 - ' Wz
All Progucts | | 895 [| 1013 (| 814 |f 1755 || 4477 | }7 AND TIME <= MARO5

Games Console 132 144 111 | 555 o2 | /

Eroduct 406 Drive | W 164 || 135 || 153 [l 145 || 597 (N7

Digital Camera | | 234 | 465 || 255 || 678 [| 1632 | JA[

LcD Monitor| | 365 || 269 [} 295 || 377 [| 1306 | V'

5
Jan05 Feb05S Mar05 Apr05 Y035
Time

Source: http://aampbis.com/Images/Olap_Cube.jpg

Berkeley

UNIVERSITY OF CALIFORNIA

Solution - AQP++

e Combine AQP with aggressive precomputation to deliver higher quality approximations
e Allows connecting AQP and its high interactivity with already existing precomputations in
data warehouses

g I
Existing Precomputation +
\ Approximation of delta
/ Output visualization that
User Query can only be more accurate

° o
O than just using AQP!

|4

B
III

Berkeley

UNIVERSITY OF CALIFORNIA

But how do we know what to precompute?

e Can’t pre-compute everything

e Query space is large - brute forcing pre-computations is impractical

e User specifies a guery template of the aggregation they intend to use on the dataset and
what conditional variables exist ARSIk O

All Customers

. Abigail Ruddy
Customer Apper Kennv
Joe Green

Fred Smuth

-2 i I I | %
All Products 895 |/ 1013 || 814 || 1755 || 4477 | }/

Games Console 132 144 111 | 555 942 |m

Broduct g0 Duive | | 164 | 135 || 153 || 145 f| 597 [WALIPHZ

Digital Camera| | 234 [| 465 || 255 || 678 || 1632 |

rep Monor | 365 {269 f| 205 [377 || 1306 |)

Jan05 Feb05 Mar05 Apr05 Y105
Time

Berkeley

UNIVERSITY OF CALIFORNIA

Prefix Cube

e Each element of the data cube stores a prefix of the aggregation for the preceding

elements in its domain
e Lower complexity even more with a blocked prefix cube

e Whiteboard time

Berkeley

UNIVERSITY OF CALIFORNIA

Blocked Prefix Cube

e Blocked prefix cubes lower complexity by lowering the amount of elements per axis
e But how do we figure out where our blocks should be?
o Uniform blocks are not optimal. More blocks should be allocated to the “interesting”
parts of the data
o Not all dimensions should have the same number of blocks

Berkeley

UNIVERSITY OF CALIFORNIA

Binary Search

AQP++ generates error profiles that measure how changing the number of possible blocks
per dimension changes the possible query template error

Uses binary search on those error profiles to figure out how many blocks it should allocate
to each dimension to minimize error within the space budget provided

errovy, (Qy, Pre) erroty, (Qz, Pue)

A +

» »
10 ks 20 k,

Error profile for Q, Error profile for Q,

Figure 6: An illustration of the binary search algorithm to
search for the BP-Cube’s shape k; X k; (suppose k = 500).

Berkeley

UNIVERSITY OF CALIFORNIA

Hill Climbing

e AQP++ uses hill climbing to figure out where to partition blocks for each dimension
e Modifies one partition on an initial, uniform cube to see if that decreases error
e Erroris calculated by finding the upper bound of query template error

o Can be found in linear time!

e Stops when no adjustment from the current cube will decrease error

Berkeley

UNIVERSITY OF CALIFORNIA

Now that we have these precomputations...

...how do we use them with queries?

Aggregate Identification

e Identify candidate aggregate values, blocks that contain some part of the query space we
want

pP- = { SUM(6:15,5:12), SUM({11:15,5: 12)
| ¢ | ¢ SUM(6:20,5:12), SUM(11:20,5: 12)
7 bemeeck : : SUM{6:15,9:12), SUM(11:15,9:12)
| | SUM(6:20,9:12), SUM(11:20,9:12),
Cy SUM{6:15,5:16). SUM(11:15,5:16),
| 1 ! SUM(6:20,5:16). SUM(11:20,5: 16),
14 ' : SUM(6:15,9:16), SUM(11:15,9:16),
SUM(6:20,9: 16), SUM(11:20,9: 16), 0)

q=SUM(8:18,7:14)

Berkeley

UNIVERSITY OF CALIFORNIA

Aggregate Identification

e Use AQP to compute the user’s query Q(S)
e For each candidate precomputation Pre(D):
o Compute what AQP would output if used to do the precomputation p(S)
o Return a candidate query result in the form Pre(D) + (Q(S) - p(S))
e Pick the query result with the best confidence interval ! Delta
o Calculated from subsamples of the AQP sample
e Edge cases
o If no precomputations can possibly help, there will be no candidates and AQP++ will
fall back to just AQP
o If there is no delta, then the precomputation exactly matches the user query and an
exact result can be returned.

Berkeley

UNIVERSITY OF CALIFORNIA

Impact

20 k- AQP
T 6L AQP++ mmm
£ 12‘f
v
£ OF
— 4‘[-

0

1 2 3 4 6

a
o

5 e

of dimensions

(a) Preprocessing Time

Berkeley

UNIVERSITY OF CALIFORNIA

9

10

Time (sec)

N
L NN
S

[y

(%

AQP
AQP++ mm—

JuuLIIJLl

2 3456 7 8 910
of dimensions
(b) Response Time

Median Error

3 4 5 6 7 8
of dimensions
(c) Answer Quality

Limitations and Extensions

e More supported aggregations (ie. how do you combine the medians of
2 blocks?)

Group-by queries (essentially treated as axes)

How to efficiently handle updates

How to handle space needs for sampling and BP-cubes

How to handle space needs for multiple query templates

Questions?

