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Introduction

& Nested data underlies most structured data processing
Data Model

Data used in web and scientific computing Nested representation

X Normalize & Recombine

In situ operation

W Data structures used in
programming languages

& Messages exchanged

) Structured documents
by distributed systems —
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Introduction
Dremel iIn Rescue

X Headers Preview Response

N R R R R R R R R
cowWwoo~NOULAWNREPEOOVONOULIEAWNERE

<!doctype html>
<html dir="1tr" lang="en"

>
<head>

<meta charset="utf-8">
<title>New Tab</title>

<style>
body {

Initiator  Timing

background: #35363A;

margin: 0;

}

#backgroundImage {

border: none;
height: 100%;

pointer-events: none;

position: fixed;

top: 0;

visibility: hidden;

width: 100%;

[show-background-image] #backgroundImage {

<iframe id="backgroundImage" src=""></iframe>

<script type="module" src="new_tab_page.js"></script>

<link rel="stylesheet" href="chrome://resources/css/text_defaults_md.css">
<link rel="stylesheet" href="chrome://theme/colors.css?sets=ui,chrome">
<link rel="stylesheet" href="shared_vars.css">

21 }

22

23

24 visibility: visible;
25 }

26 </style>

27 </head>

28 <body>

29

30 <ntp-app></ntp-app>
31

32

33

34

35 </body>

36 </html>

37

=
=
=
=

=
=
=
=

=
=
=
=

=
=
=
=

Dremel supports operation on in situ nested data

Traditional Relational Model

« Requires a sequence of MapReduce jobs

- BUT is usually prohibitive at web scale

Analyze outputs of MR pipelines
Rapidly prototype larger computations

Dremel

« Capable of operating on in situ nested data

* In situ refers to the ability to access data “in place”
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Introduction

_ Dremel offers flexibility without sacrificing performance
Solution Novelty

L Columnar storage format

Nested
Data Model

& High-level, SQL-like language Execution trees in database processing
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Data Model

Nested Data

atomic type

T =dom | (A; : 7|

~

Schema

* Defines a record type Document

message Document {

required int64 DocId;

group: list — optional group Links {

entries holding DocIds
of other web pages

repeated group Name {

— repeated int64 Backward;
L. repeated int64 Forward;

integers, floating-point numbers, strings, etc.

}

repeated group Language ({
required string Code;

optional string Country;

optional string Url;

}}

}

y” Based on strongly-typed nested records

record type: consists of / fields

name A,

T

repeated fields

Sample records

4 P P o

DocId: 10 Iy
Links
Forward: 20
Forward: 40
Forward: 60
Name
Language
Code: 'en-us'
Country: 'us'
Language
Code: 'en'
Url: 'http://A°
Name
Url: 'http://B'
Name
Language
Code: 'en-gb'
Country: 'gb'

%

‘1)

optional fields

e Dotted notation

e Name.Language.Code
* Top-most field name is often omitted

DocId: 20 r2
Links
Backward: 10
Backward: 30
Forward: 80

Name
Url: 'http://C’
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Storage Model

Goal @ Store all values of a given field consecutively
oa

improve retrieval efficiency

record-
oriented

column-
oriented

@ lossless representation of record structure in a columnar format
(%) fast encoding

5 efficient record assembly
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Storage Model

| & Introduce repetition and definition levels
Lossless Representation

Repetition levels Definition levels
* Disambiguate repeated occurrences * “how many fields in a path that could be undefined (optional / repeated)
 “at what repeated field in the field’s path the value has repeated” are actually present”
DocId: 10 l‘l e Path: Name.Language.Code DocId: 20 1‘2 * Missing occurrence: Name . Language .Country
Links e # Repeated fields: 2 (Name & Language) Links * Definition level: 1
Forward: 20 « Range of Code repetition level: [0, 2] Backward: 10
Forward: 40 Backward: 30
Forward: 60 Forward: 80
Name Name Name.Language.Country }
Language Url: 'http://C'
Code: 'en-us' +—— 0:no repeated fields
Country: 'us'
Y message Document { UsS O 3
Language . .
' ' . required int64 DocId; NUL L 2 2
Code: 'en +—— 2: field Language has repeated optional group Links {
Url: 'http://A! repeated int64 Backward;
Name repeated int64 Forward; } NULL 1 1
. 1 . ' repeated group Name {
ULl http: //B repeated group Language { gb 1 3
Name required string Code; NUIL L 0 1
Language optional string Country; }
Code: 'en-gb' |+—— 1:Name has repeated most recently optional string Url; }}
Country: 'gb'
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Storage Model

| I8 Column-striped representation of the data
Columnar Encoding

Column store as a set of blocks

Docld Name.Url Links.Forward || Links.Backward
compressed field values —

http://A | 0 2 20 0 2 NULL | O 1
20 0 O http://B | 1 2 40 1 2 10 0 2
NULL (1 1 60 1 2 30 1 2
http://C | 0 2 30 0 2
Name.Language.Code ] % Name.Language.Country ]
en-us |0 2 us 0 3
en 2 2 NULL 2 2| — NULLs: not stored explicitly; determined by the definition levels
NULL 1 1 NULL 1 1 any definition level smaller than the number of repeated and
en-gb 1 9 gb 1 3 optional fields in a field’s path denotes a NULL
NULL [0 1 NULL [0 1
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Storage Model
Decompose Record

© Produce column stripes efficiently

1 procedure DissectRecord (RecordDecoder decoder, Freldirite . . :
. . . . L —— ¢ atree whose structure matches the field hierarchy in the schema
2 FieldWriter writer, :Ln't. repetitionlevel): + handle missing fields cheaply
3 Add current repetitionLevel and definition level to writer
4  seenFields = {} // empty set of integers . A .
5 while decoder has more field values
6 FieldWriter chWriter =
7 child of writer for field read by decoder
8 int chRepetitionlLevel = repetitionlevel
9 if set seenFields contains field ID of chWriter
10 chRepetitionLevel = tree depth of chWriter
11 else
12 Add field ID of chWriter to seenFields
13 end if column- 1,
14 if chWriter corresponds to an atomic field oriented
15 Write value of current field read by decoder
16 using chWriter at chRepetitionLevel
17 else
18 DissectRecord (Nn€ew RecordDecoder for nested record ______* recurses into the record structure
19 read by decoder, chWriter, chRepetitionLevel) * computes the levels for each field value
20 end 1if

21 end while
22 end procedure
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Storage Model
Reassemble Record

X FSM assembles records from columnar data

Goal Given a subset of fields, reconstruct the original records as if they contained just the selected fields, with all other fields stripped away

Method  Create a finite state machine (FSM) that reads the field values and levels for each field, and appends the values sequentially to the output records

!

' Docld |

y
1@ Links.Backward J—O'[ Links.Forward 01
/—_2/

[ Name.Language.Code }ﬂ’{ Name.Language.CountryJ
2

1 Name.Url 0,1
0}

Complete record assembly automaton

1

 Docld |

)

Name.Language.CountryJ

0

|

DocId: 10 Sl
Name
Language
Country: 'us’
Language
Name
Language
Country: 'gb’
DocId: 20 SZ
Name

Partial record assembly automaton
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Query Language

SQL-like query implementable on columnar nested data
Sample Query

e Aggregation is done WITHIN each Name subrecord
e Emits the number of occurrences of Name . Language . Code for
each Name as a non-negative 64-bit integer

* Each scalar expression in the SELECT clause emits a value at the same

level of nesting as the most-repeated input field used in that expression
=) Within-record

Aggregation
& Projection  sprreT pocId As Id,

COUNT (Name.Language.Code) WITHIN Name AS Cnt, ——
Name .Url + ',' + Name.Language.Code AS Str

FROM t — 1 ={r,n}
WHERE REGEXP (Name.Url, '“http') AND DocId < 20;

reference field using
path expressions

. Selection

A
B A . * Each tree node corresponds to a field name
Py * Selection operator prunes away the branches of the tree that do not satisfy the specified conditions
C D

I
nE
. 1'1I ,
12I I,
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Query Language

Query Execution

Just like a web search request, a query gets pushed down the tree and is rewritten at each step

The result of the query is assembled by aggregating the replies received from lower levels of the tree

* Receives incoming queries
* Reads metadata from tables
* Routes the queries to the next level

 Communicate w/ storage layer
Access the data on local disk

— (with local @ E Ej

client

!

root server
intermediate
servers
TN
leaf servers .-

storage)

|

query execution tree

I\

-
1l

GDIGDEE

I

storage layer (e.g., GFS)

Il

1l

1l

Uses a multi-level serving tree to execute queries

SELECT A, COUNT(B) FROM T GROUP BY A

* Root server determines all tablets
(horizontal partitions)
* Rewrites the query

\4

SELECT A, SUM(c) FROM (R% UNION ALL ... R,lz) GROUP BY A

Tables R/,...,R, sent to the nodes
1,....,n at level 1 of the serving tree

\4

R} = SELECT A, COUNT(B) AS ¢ FROM Tz-l GROUP BY A

T! is a disjoint partition of tablets in T

l

processed by server / at level 1

\4

Reach the leaves, scan the tablets in T in parallel
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Query Language

| #. Schedule queries & provide fault tolerance
Query Dispatch

Processing units: SLOT Tablet processing times histogram

tablet processing times

client query execution tree K will be redispatched

to another server
I ] !

root server O

isngc:,\:g:diate '. B ( ) C ) o
lA \\\\\\\ ”

eafservers _ OO0 -

storage) @ @ @ o ” “ ”

sot EEEEEEEE . et
(an execution thread
on a leaf server)
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Experiments 9] Columnar storage outperforms record-wise storage when
Local Disk few columns are read

Goal Examine performance tradeoffs of columnar vs. record-oriented storage
Data . . .
Table name # of records Size # of fields Data center | Replicate factor
T1 85 billion 87 1B 270 A 3x

 1GB fragment of table T1 containing ~300k rows
e Stored on local disk, ~375MB in compressed representation

time (sec)
Task  Read & uncompress data 20
« Assemble & parse records 2 e s (€ ) PATSE @S
21 18 objects
S 16
Result « When few columns are read, the gains of L=
columnar representation are of about an order of CE> 14 objects
magnitude P ———— (t(ij) read +
- ecompress
« Retrieval time for columnar nested data grows 10 P R
linearly with the number of fields 0 8 columns (c) parse as
. - - = 6 objects
Record assembly and parsing are expensive, S
each potentially doubling the execution time g4 4 (b) asser(r;ble
records
- 2
= — v (a) read +
- 0 | decompress

1 2 3 4 5 6 7 8 9 10
number of fields



Experiments

~, Execution efficiency: Dremel > MR-col > MR-records
MR & Dremel

Goal lllustrate a MR and Dremel execution on columnar vs. record-oriented data
Data . . .
Table name # of records Size # of fields Data center | Replicate factor
T1 85 billion 87 TB 270 A 3x
Task e Count the average number of terms in a field txtField in table T1 (Q1: SELECT SUM(CountWords(txtField)) / COUNT(*) FROM TH1
R I
esult MR-records MR-columns Dremel
Workers / nodes 3000 3000 3000
Data read 87 1B 0.5TB 0.5TB
execution time (sec)
10000
1000
100
10 1 " * '
MR-records MR-columns Dremel er e €y
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Experiments

Serving Tree Topology

Goal

Data

Task

Result

4 Aggregations returning many groups benefit
from multi-level serving trees

Impact of the serving tree depth on query execution times

Table name

# of records

Size

# of fields Data center | Replicate factor

12

24 Dbillion

13 1B

530 A 3%

 Each record has a repeated field item containing a numeric amount

repeated group item ({

optional int64 amount;

* Sums up the item amount by country
e Returns a few hundred records

()2: SELECT country, SUM(item.amount) FROM T2
GROUP BY country

execution time (sec)

60

50

40

30

20

10

Q2

Q3

item.amount repeats about 40 billion times in the dataset

« Performs a GROUP BY on a text field domain with a selection condition

* Produces around 1.1 million distinct domains

(23: SELECT domain, SUM(item.amount) FROM T2
WHERE domain CONTAINS '.net’
GROUP BY domain

w2 levels
1:100: 2900

1:10:100 : 2900

w 3 levels

4 |levels

a single root server communicates directly with the leaf servers
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Experiments

| "\ 99% of Q2/Q3 tablets are processed under 1s/2s
Per-tablet Histograms

Goal Drill deeper into what happens during query execution
Data . . .
Table name # of records Size # of fields Data center | Replicate factor
T2 24 billion 13 TB 530 A 3x
Task * Sums up the item amount by country  Performs a GROUP BY on a text field domain with a selection condition
* Returns a few hundred records * Produces around 1.1 million distinct domains
()2: SELECT country, SUM(item.amount) FROM T2 (23: SELECT domain, SUM(item.amount) FROM T2
GROUP BY country WHERE domain CONTAINS ".net’
GROUP BY domain
Result 16 percentage of processed tablets SO O O S A S
12
Q2
12
1 +— ————————————— e
08 —f—f — %N +— 77
0.6
Y S e ey e 4 **********************

_ processing time
per tablet (sec)
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Experiments

Within-record Aggregation

Goal

Data

Task

Result

Examine the performance of Query Q4 run on Table T3

Table name # of records Size # of fields Data center

Replicate factor

13 4 billion /0 TB 1200 A

3x

« Within-record aggregation: Counts all records where the sumofa.b.c.d
values occurring in the record are larger than the sumof a.b.p.g.r values

Q4 : SELECT COUNT(c1 > c2) FROM
(SELECT SUM(a.b.c.d) WITHIN RECORD AS cf,
SUM(a.b.p.q.r) WITHIN RECORD AS c2
FROM T3)

e Due to column striping only 13GB (out of 70TB) are read from disk and
the query completes in 15 seconds

7% Cheaper processing due to nesting support
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Experiments

Scalability

Goal

Data

Task

Result

lllustrate the scalability of the system on a trillion-record table

Table name

# of records

Size

# of fields

Data center

Replicate factor

T4

1+ trillion

105 TB

50

B

3x

o Select top-20 aid’s and their number of occurrences in Table T4

Qs: SELECT TOP(aid, 20), COUNT(*) FROM T4
WHERE bid = {value1} AND cid = {value2}

e Total expended CPU time is nearly identical at ~300k seconds
* User-perceived time decreases near-linearly with the growing size of the system

execution time (sec)

250

200

150

100

50

0 -

1000

2000

3000

. humber of

4000 leaf servers

&) A larger system can be as effective as a smaller one in
terms of resource usage, yet allows faster execution
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Experiments

Stragglers

W A small fraction of the tablets take a lot longer

Goal Show the impact of stragglers
Data . . .
Table name # of records Size # of fields Data center | Replicate factor
T5 1+ trillion 20 TB 30 B 2x
* The likelihood of stragglers slowing the execution is higher since there are fewer opportunities to reschedule the work
Task * Read over 1TB of compressed data Qe: SELECT COUNT(DISTINCT a) FROM T5
Result * Processing time for 99% of the tablets is below 5 seconds per tablet per slot
percentage of processed tablets
0.6
0.5
0.4
0.3
0.2 stragglers
0.1 SIS o SR =
\|
0
0 2 4 6 8 10 12 14 16

processing time per tablet (sec)
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Experiments
Observations

4% The bulk of a web-scale dataset can be scanned fast

Most queries are processed <10 seconds, well within the interactive range

percentage of queries

30
25
20
15
10

5 execution
0 | I " time (sec)

1 10 100 1000
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Thank You!
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