Interactive Analysis of Web-Scale Datasets

#~ Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey Romer, Shiva Shivakumar, Matt Tolton, Theo Vassilakis (2010)
In Proceedings of the VLDB Endowment

Wenjing Lin
Role: Paper Author

Berkeley

UNIVERSITY OF CALIFORNIA

Introduction

Introduction

Back in 2006

Main Page | Recent changes | Protected page |

Printable version
Other languages: German | Esperanto | Spanish

History | Special pages

nl “Big data” has become widespread, yet non-relational

v | Go |

WIKIPED[A | French | Dutch | Polish | Portuguese
Main Page

From Wikipedia, the free encyclopedia.

The Free Encyclopedia

Main Page
Recent changes
Random page
Watch list
Current events

Welcome to Wikipedia, a collaborative project to produce a cor
encvclopedia from scratch. We started in January 2001 and are ah
on 48152 articles, with more being added and improved all the tim
including you, can edit any article right now, without even having tc

Protected page copyedit, expand an article, write a little or write a lot. See the Wil

Talk page more background information about the project, and the help page

Historv on how to use and contribute to Wikipedia.

What links here

Watch links The content of Wikipedia is covered by the GNU Free Document
w hxch means that it is free and will remain so forever. See wil_ag
. 228 el S VI Q. § R Y V' § I, IDEpR N,

Google went live

NV

2001 °
O

/\

MapReduce: Simplified Data Processing on Large Clusters

Jeffrey Dean and Sanjay Ghemawat
jeff@google.com, sanjay @google.com

Google, Inc.

K

“The” Facebook launched
MapReduce paper published

1998

Wikipedia launched

GO\)gl ;

Search the web using Google!

[Google Search { I'm feeling lucky]

Special Searches
Stnford Scarch
Linux Search R hive

Copyright ©1998 Google Inc.

N

2005
O

/\

2 Dremel in production

Hadoop released

A4

2004

Youtube launched

[Welcome to Thefacebook]

n
¢ connects people 1o

jrectory tha
is an online dif .
k is oular consumption atH

Thefaceboo
- —mnd uny ThefacebooK for PO

social networks at colleges.

arvard University.

/2007
O

/\

IPhone launched

- : % . u
sann :
":‘-e e
ok Aok
CEES

——

Berkeley

UNIVERSITY OF CALIFORNIA

Introduction

& Nested data underlies most structured data processing
Data Model

Data used in web and scientific computing Nested representation

X Normalize & Recombine

In situ operation

W Data structures used in
programming languages

& Messages exchanged

) Structured documents
by distributed systems —

Berkeley

UNIVERSITY OF CALIFORNIA

Introduction
Dremel iIn Rescue

X Headers Preview Response

N R R R R R R R R
cowWwoo~NOULAWNREPEOOVONOULIEAWNERE

<!doctype html>
<html dir="1tr" lang="en"

>
<head>

<meta charset="utf-8">
<title>New Tab</title>

<style>
body {

Initiator Timing

background: #35363A;

margin: 0;

}

#backgroundImage {

border: none;
height: 100%;

pointer-events: none;

position: fixed;

top: 0;

visibility: hidden;

width: 100%;

[show-background-image] #backgroundImage {

<iframe id="backgroundImage" src=""></iframe>

<script type="module" src="new_tab_page.js"></script>

<link rel="stylesheet" href="chrome://resources/css/text_defaults_md.css">
<link rel="stylesheet" href="chrome://theme/colors.css?sets=ui,chrome">
<link rel="stylesheet" href="shared_vars.css">

21 }

22

23

24 visibility: visible;
25 }

26 </style>

27 </head>

28 <body>

29

30 <ntp-app></ntp-app>
31

32

33

34

35 </body>

36 </html>

37

=
=
=
=

=
=
=
=

=
=
=
=

=
=
=
=

Dremel supports operation on in situ nested data

Traditional Relational Model

« Requires a sequence of MapReduce jobs

- BUT is usually prohibitive at web scale

Analyze outputs of MR pipelines
Rapidly prototype larger computations

Dremel

« Capable of operating on in situ nested data

* In situ refers to the ability to access data “in place”

Berkeley

UNIVERSITY OF CALIFORNIA

Introduction

_ Dremel offers flexibility without sacrificing performance
Solution Novelty

L Columnar storage format

Nested
Data Model

& High-level, SQL-like language Execution trees in database processing

Berkeley

UNIVERSITY OF CALIFORNIA

Model

Data Model

Nested Data

atomic type

T =dom | (A; : 7|

~

Schema

* Defines a record type Document

message Document {

required int64 DocId;

group: list — optional group Links {

entries holding DocIds
of other web pages

repeated group Name {

— repeated int64 Backward;
L. repeated int64 Forward;

integers, floating-point numbers, strings, etc.

}

repeated group Language ({
required string Code;

optional string Country;

optional string Url;

}}

}

y” Based on strongly-typed nested records

record type: consists of / fields

name A,

T

repeated fields

Sample records

4 P P o

DocId: 10 Iy
Links
Forward: 20
Forward: 40
Forward: 60
Name
Language
Code: 'en-us'
Country: 'us'
Language
Code: 'en'
Url: 'http://A°
Name
Url: 'http://B'
Name
Language
Code: 'en-gb'
Country: 'gb'

%

‘1)

optional fields

e Dotted notation

e Name.Language.Code
* Top-most field name is often omitted

DocId: 20 r2
Links
Backward: 10
Backward: 30
Forward: 80

Name
Url: 'http://C’

Berkeley

UNIVERSITY OF CALIFORNIA

Storage
Model

Storage Model

Goal @ Store all values of a given field consecutively
oa

improve retrieval efficiency

record-
oriented

column-
oriented

@ lossless representation of record structure in a columnar format
(%) fast encoding

5 efficient record assembly

Berkeley

UNIVERSITY OF CALIFORNIA

Storage Model

| & Introduce repetition and definition levels
Lossless Representation

Repetition levels Definition levels
* Disambiguate repeated occurrences * “how many fields in a path that could be undefined (optional / repeated)
 “at what repeated field in the field’s path the value has repeated” are actually present”
DocId: 10 l‘l e Path: Name.Language.Code DocId: 20 1‘2 * Missing occurrence: Name . Language .Country
Links e # Repeated fields: 2 (Name & Language) Links * Definition level: 1
Forward: 20 « Range of Code repetition level: [0, 2] Backward: 10
Forward: 40 Backward: 30
Forward: 60 Forward: 80
Name Name Name.Language.Country }
Language Url: 'http://C'
Code: 'en-us' +—— 0:no repeated fields
Country: 'us'
Y message Document { UsS O 3
Language . .
' ' . required int64 DocId; NUL L 2 2
Code: 'en +—— 2: field Language has repeated optional group Links {
Url: 'http://A! repeated int64 Backward;
Name repeated int64 Forward; } NULL 1 1
. 1 . ' repeated group Name {
ULl http: //B repeated group Language { gb 1 3
Name required string Code; NUIL L 0 1
Language optional string Country; }
Code: 'en-gb' |+—— 1:Name has repeated most recently optional string Url; }}
Country: 'gb'

Berkeley

UNIVERSITY OF CALIFORNIA

Storage Model

| I8 Column-striped representation of the data
Columnar Encoding

Column store as a set of blocks

Docld Name.Url Links.Forward || Links.Backward
compressed field values —

http://A | 0 2 20 0 2 NULL | O 1
20 0 O http://B | 1 2 40 1 2 10 0 2
NULL (1 1 60 1 2 30 1 2
http://C | 0 2 30 0 2
Name.Language.Code] % Name.Language.Country]
en-us |0 2 us 0 3
en 2 2 NULL 2 2| — NULLs: not stored explicitly; determined by the definition levels
NULL 1 1 NULL 1 1 any definition level smaller than the number of repeated and
en-gb 1 9 gb 1 3 optional fields in a field’s path denotes a NULL
NULL [0 1 NULL [0 1

Berkeley

UNIVERSITY OF CALIFORNIA

Storage Model
Decompose Record

© Produce column stripes efficiently

1 procedure DissectRecord (RecordDecoder decoder, Freldirite . . :
. . . . L —— ¢ atree whose structure matches the field hierarchy in the schema
2 FieldWriter writer, :Ln't. repetitionlevel): + handle missing fields cheaply
3 Add current repetitionLevel and definition level to writer
4 seenFields = {} // empty set of integers . A .
5 while decoder has more field values
6 FieldWriter chWriter =
7 child of writer for field read by decoder
8 int chRepetitionlLevel = repetitionlevel
9 if set seenFields contains field ID of chWriter
10 chRepetitionLevel = tree depth of chWriter
11 else
12 Add field ID of chWriter to seenFields
13 end if column- 1,
14 if chWriter corresponds to an atomic field oriented
15 Write value of current field read by decoder
16 using chWriter at chRepetitionLevel
17 else
18 DissectRecord (Nn€ew RecordDecoder for nested record ______* recurses into the record structure
19 read by decoder, chWriter, chRepetitionLevel) * computes the levels for each field value
20 end 1if

21 end while
22 end procedure

Berkeley

UNIVERSITY OF CALIFORNIA

Storage Model
Reassemble Record

X FSM assembles records from columnar data

Goal Given a subset of fields, reconstruct the original records as if they contained just the selected fields, with all other fields stripped away

Method Create a finite state machine (FSM) that reads the field values and levels for each field, and appends the values sequentially to the output records

!

' Docld |

y
1@ Links.Backward J—O'[Links.Forward 01
/—_2/

[Name.Language.Code }ﬂ’{ Name.Language.CountryJ
2

1 Name.Url 0,1
0}

Complete record assembly automaton

1

 Docld |

)

Name.Language.CountryJ

0

|

DocId: 10 Sl
Name
Language
Country: 'us’
Language
Name
Language
Country: 'gb’
DocId: 20 SZ
Name

Partial record assembly automaton

Berkeley

UNIVERSITY OF CALIFORNIA

Query
Language

Query Language

SQL-like query implementable on columnar nested data
Sample Query

e Aggregation is done WITHIN each Name subrecord
e Emits the number of occurrences of Name . Language . Code for
each Name as a non-negative 64-bit integer

* Each scalar expression in the SELECT clause emits a value at the same

level of nesting as the most-repeated input field used in that expression
=) Within-record

Aggregation
& Projection sprreT pocId As Id,

COUNT (Name.Language.Code) WITHIN Name AS Cnt, ——
Name .Url + ',' + Name.Language.Code AS Str

FROM t — 1 ={r,n}
WHERE REGEXP (Name.Url, '“http') AND DocId < 20;

reference field using
path expressions

. Selection

A
B A . * Each tree node corresponds to a field name
Py * Selection operator prunes away the branches of the tree that do not satisfy the specified conditions
C D

I
nE
. 1'1I ,
12I I,

Berkeley

UNIVERSITY OF CALIFORNIA

Query Language

Query Execution

Just like a web search request, a query gets pushed down the tree and is rewritten at each step

The result of the query is assembled by aggregating the replies received from lower levels of the tree

* Receives incoming queries
* Reads metadata from tables
* Routes the queries to the next level

 Communicate w/ storage layer
Access the data on local disk

— (with local @ E Ej

client

!

root server
intermediate
servers
TN
leaf servers .-

storage)

|

query execution tree

I\

-
1l

GDIGDEE

I

storage layer (e.g., GFS)

Il

1l

1l

Uses a multi-level serving tree to execute queries

SELECT A, COUNT(B) FROM T GROUP BY A

* Root server determines all tablets
(horizontal partitions)
* Rewrites the query

\4

SELECT A, SUM(c) FROM (R% UNION ALL ... R,lz) GROUP BY A

Tables R/,...,R, sent to the nodes
1,....,n at level 1 of the serving tree

\4

R} = SELECT A, COUNT(B) AS ¢ FROM Tz-l GROUP BY A

T! is a disjoint partition of tablets in T

l

processed by server / at level 1

\4

Reach the leaves, scan the tablets in T in parallel

Berkeley

UNIVERSITY OF CALIFORNIA

Query Language

| #. Schedule queries & provide fault tolerance
Query Dispatch

Processing units: SLOT Tablet processing times histogram

tablet processing times

client query execution tree K will be redispatched

to another server
I] !

root server O

isngc:,\:g:diate '. B () C) o
lA \\\\\\\ ”

eafservers _ OO0 -

storage) @ @ @ o ” “ ”

sot EEEEEEEE . et
(an execution thread
on a leaf server)

Berkeley

UNIVERSITY OF CALIFORNIA

EXperiments

Experiments 9] Columnar storage outperforms record-wise storage when
Local Disk few columns are read

Goal Examine performance tradeoffs of columnar vs. record-oriented storage
Data . . .
Table name # of records Size # of fields Data center | Replicate factor
T1 85 billion 87 1B 270 A 3x

 1GB fragment of table T1 containing ~300k rows
e Stored on local disk, ~375MB in compressed representation

time (sec)
Task Read & uncompress data 20
« Assemble & parse records 2 e s (€) PATSE @S
21 18 objects
S 16
Result « When few columns are read, the gains of L=
columnar representation are of about an order of CE> 14 objects
magnitude P ———— (t(ij) read +
- ecompress
« Retrieval time for columnar nested data grows 10 P R
linearly with the number of fields 0 8 columns (c) parse as
. - - = 6 objects
Record assembly and parsing are expensive, S
each potentially doubling the execution time g4 4 (b) asser(r;ble
records
- 2
= — v (a) read +
- 0 | decompress

1 2 3 4 5 6 7 8 9 10
number of fields

Experiments

~, Execution efficiency: Dremel > MR-col > MR-records
MR & Dremel

Goal lllustrate a MR and Dremel execution on columnar vs. record-oriented data
Data . . .
Table name # of records Size # of fields Data center | Replicate factor
T1 85 billion 87 TB 270 A 3x
Task e Count the average number of terms in a field txtField in table T1 (Q1: SELECT SUM(CountWords(txtField)) / COUNT(*) FROM TH1
R I
esult MR-records MR-columns Dremel
Workers / nodes 3000 3000 3000
Data read 87 1B 0.5TB 0.5TB
execution time (sec)
10000
1000
100
10 1 " * '
MR-records MR-columns Dremel er e €y
UNIVERSITY OF CALIFORNIA

Experiments

Serving Tree Topology

Goal

Data

Task

Result

4 Aggregations returning many groups benefit
from multi-level serving trees

Impact of the serving tree depth on query execution times

Table name

of records

Size

of fields Data center | Replicate factor

12

24 Dbillion

13 1B

530 A 3%

 Each record has a repeated field item containing a numeric amount

repeated group item ({

optional int64 amount;

* Sums up the item amount by country
e Returns a few hundred records

()2: SELECT country, SUM(item.amount) FROM T2
GROUP BY country

execution time (sec)

60

50

40

30

20

10

Q2

Q3

item.amount repeats about 40 billion times in the dataset

« Performs a GROUP BY on a text field domain with a selection condition

* Produces around 1.1 million distinct domains

(23: SELECT domain, SUM(item.amount) FROM T2
WHERE domain CONTAINS '.net’
GROUP BY domain

w2 levels
1:100: 2900

1:10:100 : 2900

w 3 levels

4 |levels

a single root server communicates directly with the leaf servers

Berkeley

UNIVERSITY OF CALIFORNIA

Experiments

| "\ 99% of Q2/Q3 tablets are processed under 1s/2s
Per-tablet Histograms

Goal Drill deeper into what happens during query execution
Data . . .
Table name # of records Size # of fields Data center | Replicate factor
T2 24 billion 13 TB 530 A 3x
Task * Sums up the item amount by country Performs a GROUP BY on a text field domain with a selection condition
* Returns a few hundred records * Produces around 1.1 million distinct domains
()2: SELECT country, SUM(item.amount) FROM T2 (23: SELECT domain, SUM(item.amount) FROM T2
GROUP BY country WHERE domain CONTAINS ".net’
GROUP BY domain
Result 16 percentage of processed tablets SO O O S A S
12
Q2
12
1 +— ————————————— e
08 —f—f — %N +— 77
0.6
Y S e ey e 4 **********************

_ processing time
per tablet (sec)

UNIVERSITY OF CALIFORNIA

Experiments

Within-record Aggregation

Goal

Data

Task

Result

Examine the performance of Query Q4 run on Table T3

Table name # of records Size # of fields Data center

Replicate factor

13 4 billion /0 TB 1200 A

3x

« Within-record aggregation: Counts all records where the sumofa.b.c.d
values occurring in the record are larger than the sumof a.b.p.g.r values

Q4 : SELECT COUNT(c1 > c2) FROM
(SELECT SUM(a.b.c.d) WITHIN RECORD AS cf,
SUM(a.b.p.q.r) WITHIN RECORD AS c2
FROM T3)

e Due to column striping only 13GB (out of 70TB) are read from disk and
the query completes in 15 seconds

7% Cheaper processing due to nesting support

Berkeley

UNIVERSITY OF CALIFORNIA

Experiments

Scalability

Goal

Data

Task

Result

lllustrate the scalability of the system on a trillion-record table

Table name

of records

Size

of fields

Data center

Replicate factor

T4

1+ trillion

105 TB

50

B

3x

o Select top-20 aid’s and their number of occurrences in Table T4

Qs: SELECT TOP(aid, 20), COUNT(*) FROM T4
WHERE bid = {value1} AND cid = {value2}

e Total expended CPU time is nearly identical at ~300k seconds
* User-perceived time decreases near-linearly with the growing size of the system

execution time (sec)

250

200

150

100

50

0 -

1000

2000

3000

. humber of

4000 leaf servers

&) A larger system can be as effective as a smaller one in
terms of resource usage, yet allows faster execution

Berkeley

UNIVERSITY OF CALIFORNIA

Experiments

Stragglers

W A small fraction of the tablets take a lot longer

Goal Show the impact of stragglers
Data . . .
Table name # of records Size # of fields Data center | Replicate factor
T5 1+ trillion 20 TB 30 B 2x
* The likelihood of stragglers slowing the execution is higher since there are fewer opportunities to reschedule the work
Task * Read over 1TB of compressed data Qe: SELECT COUNT(DISTINCT a) FROM T5
Result * Processing time for 99% of the tablets is below 5 seconds per tablet per slot
percentage of processed tablets
0.6
0.5
0.4
0.3
0.2 stragglers
0.1 SIS o SR =
\|
0
0 2 4 6 8 10 12 14 16

processing time per tablet (sec)

Berkeley

UNIVERSITY OF CALIFORNIA

Experiments
Observations

4% The bulk of a web-scale dataset can be scanned fast

Most queries are processed <10 seconds, well within the interactive range

percentage of queries

30
25
20
15
10

5 execution
0 | I " time (sec)

1 10 100 1000

Berkeley

UNIVERSITY OF CALIFORNIA

Thank You!

IIIIIIIIIIIIIIIIIIIIII

