
Dremel: Interactive Analysis of Web-Scale Datasets

Wenjing Lin

Role: Paper Author

Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey Romer, Shiva Shivakumar, Matt Tolton, Theo Vassilakis (2010)

In Proceedings of the VLDB Endowment

01Introduction

01Introduction
Back in 2006

📊 “Big data” has become widespread, yet non-relational

1998

Google went live 2001

Wikipedia launched
2004

“The” Facebook launched

MapReduce paper published 2005

Youtube launched
2006

🏄 Dremel in production
Hadoop released

2007

iPhone launched

🔗 Nested data underlies most structured data processing01Introduction
Data Model

1⃣ Data structures used in
programming languages

2⃣ Messages exchanged
by distributed systems 3⃣ Structured documents

Data used in web and scientific computing Nested representation

❌ Normalize & Recombine

✅ In situ operation

✅ Dremel supports operation on in situ nested data01Introduction
Dremel in Rescue

📁 📁 📁 📁

📁 📁 📁 📁

📁 📁 📁 📁

📁 📁 📁 📁

…
…

Traditional Relational Model

• Requires a sequence of MapReduce jobs

• BUT is usually prohibitive at web scale

Dremel

• Capable of operating on in situ nested data

• In situ refers to the ability to access data “in place”

Analyze outputs of MR pipelines
Rapidly prototype larger computations

✨ Dremel offers flexibility without sacrificing performance01Introduction
Solution Novelty

1⃣ Columnar storage format

2⃣ High-level, SQL-like language 3⃣ Execution trees in database processing

Nested
Data Model

02 Data
Model

02 Data Model
Nested Data

📡 Based on strongly-typed nested records

atomic type record type: consists of i fields

integers, floating-point numbers, strings, etc. name Ai repeated fields optional fields

Schema Sample records

• Defines a record type Document

group: list

entries holding DocIds
of other web pages

• Dotted notation

• Name.Language.Code

• Top-most field name is often omitted

03 Storage
Model

03 Storage Model
Goal

🎯 Store all values of a given field consecutively

improve retrieval efficiency

🤯 lossless representation of record structure in a columnar format

🤔 fast encoding

🤧 efficient record assembly

Challenges

03 Storage Model
Lossless Representation

🎙 Introduce repetition and definition levels

Repetition levels Definition levels

• Disambiguate repeated occurrences

• “at what repeated field in the field’s path the value has repeated”

• Path: Name.Language.Code
• # Repeated fields: 2 (Name & Language)

• Range of Code repetition level: [0, 2]

0: no repeated fields

2: field Language has repeated

1: Name has repeated most recently

• “how many fields in a path that could be undefined (optional / repeated)
are actually present”

• Missing occurrence: Name.Language.Country
• Definition level: 1

03 Storage Model
Columnar Encoding

🎋 Column-striped representation of the data

Column: store as a set of blocks

compressed field values

NULLs: not stored explicitly; determined by the definition levels

any definition level smaller than the number of repeated and
optional fields in a field’s path denotes a NULL

03 Storage Model
Decompose Record

🪵 Produce column stripes efficiently

• recurses into the record structure

• computes the levels for each field value

FieldWrite
• a tree whose structure matches the field hierarchy in the schema

• handle missing fields cheaply

03 Storage Model
Reassemble Record

🛠 FSM assembles records from columnar data

Goal Given a subset of fields, reconstruct the original records as if they contained just the selected fields, with all other fields stripped away

Method Create a finite state machine (FSM) that reads the field values and levels for each field, and appends the values sequentially to the output records

Complete record assembly automaton Partial record assembly automaton

04 Query
Language

04 Query Language
Sample Query

🙊 SQL-like query implementable on columnar nested data

t = {r1, r2}

reference field using
path expressions

1⃣ Selection

• Each tree node corresponds to a field name

• Selection operator prunes away the branches of the tree that do not satisfy the specified conditions

2⃣ Projection

3⃣ Within-record
Aggregation

• Each scalar expression in the SELECT clause emits a value at the same
level of nesting as the most-repeated input field used in that expression

• Aggregation is done WITHIN each Name subrecord

• Emits the number of occurrences of Name.Language.Code for

each Name as a non-negative 64-bit integer

04 Query Language
Query Execution

🌳 Uses a multi-level serving tree to execute queries

• Receives incoming queries

• Reads metadata from tables

• Routes the queries to the next level

• Communicate w/ storage layer

• Access the data on local disk

• Root server determines all tablets
(horizontal partitions)

• Rewrites the query

Tables R1
1 , . . . , R1

n sent to the nodes
1,...,n at level 1 of the serving tree

T1
i is a disjoint partition of tablets in T

processed by server i at level 1

Reach the leaves, scan the tablets in T in parallel

Just like a web search request, a query gets pushed down the tree and is rewritten at each step

The result of the query is assembled by aggregating the replies received from lower levels of the tree

04 Query Language
Query Dispatch

🤹 Schedule queries & provide fault tolerance

🧵🧵🧵🧵🧵🧵🧵🧵slot
(an execution thread

on a leaf server)

tablet processing times

tablet

will be redispatched
to another server

Tablet processing times histogramProcessing units: SLOT

05Experiments

05 Experiments
Local Disk

💾 Columnar storage outperforms record-wise storage when
few columns are read

Goal Examine performance tradeoffs of columnar vs. record-oriented storage

Data

• 1GB fragment of table T1 containing ~300k rows

• Stored on local disk, ~375MB in compressed representation

Table name # of records Size # of fields Data center Replicate factor

T1 85 billion 87 TB 270 A 3×

Task • Read & uncompress data

• Assemble & parse records

Result • When few columns are read, the gains of
columnar representation are of about an order of
magnitude

• Retrieval time for columnar nested data grows
linearly with the number of fields

• Record assembly and parsing are expensive,
each potentially doubling the execution time

05 Experiments
MR & Dremel

🏃 Execution efficiency: Dremel > MR-col > MR-records

Goal Illustrate a MR and Dremel execution on columnar vs. record-oriented data

Data
Table name # of records Size # of fields Data center Replicate factor

T1 85 billion 87 TB 270 A 3×

Task • Count the average number of terms in a field txtField in table T1

Result
MR-records MR-columns Dremel

Workers / nodes 3000 3000 3000

Data read 87 TB 0.5 TB 0.5 TB

05 Experiments
Serving Tree Topology

🌲 Aggregations returning many groups benefit
from multi-level serving trees

Goal Impact of the serving tree depth on query execution times

Data
Table name # of records Size # of fields Data center Replicate factor

T2 24 billion 13 TB 530 A 3×

Task

• Each record has a repeated field item containing a numeric amount

Result

repeated group item {
optional int64 amount; }

item.amount repeats about 40 billion times in the dataset

• Sums up the item amount by country

• Returns a few hundred records

• Performs a GROUP BY on a text field domain with a selection condition

• Produces around 1.1 million distinct domains

a single root server communicates directly with the leaf servers
1 : 100 : 2900
1 : 10 : 100 : 2900

05 Experiments
Per-tablet Histograms

📉 99% of Q2/Q3 tablets are processed under 1s/2s

Goal Drill deeper into what happens during query execution

Data

Task

Result

Table name # of records Size # of fields Data center Replicate factor

T2 24 billion 13 TB 530 A 3×

• Sums up the item amount by country

• Returns a few hundred records

• Performs a GROUP BY on a text field domain with a selection condition

• Produces around 1.1 million distinct domains

05 Experiments
Within-record Aggregation

✂ Cheaper processing due to nesting support

Goal Examine the performance of Query Q4 run on Table T3

Data

Task

Result

Table name # of records Size # of fields Data center Replicate factor

T3 4 billion 70 TB 1200 A 3×

• Within-record aggregation: Counts all records where the sum of a.b.c.d

values occurring in the record are larger than the sum of a.b.p.q.r values

• Due to column striping only 13GB (out of 70TB) are read from disk and
the query completes in 15 seconds

05 Experiments
Scalability

⬆ A larger system can be as effective as a smaller one in
terms of resource usage, yet allows faster execution

Goal Illustrate the scalability of the system on a trillion-record table

Data

Task

Result

Table name # of records Size # of fields Data center Replicate factor

T4 1+ trillion 105 TB 50 B 3×

• Select top-20 aid’s and their number of occurrences in Table T4

• Total expended CPU time is nearly identical at ~300k seconds

• User-perceived time decreases near-linearly with the growing size of the system

05 Experiments
Stragglers

🐢 A small fraction of the tablets take a lot longer

Goal Show the impact of stragglers

Data

Task

Result

Table name # of records Size # of fields Data center Replicate factor

T5 1+ trillion 20 TB 30 B 2×

• Read over 1TB of compressed data

• The likelihood of stragglers slowing the execution is higher since there are fewer opportunities to reschedule the work

• Processing time for 99% of the tablets is below 5 seconds per tablet per slot

05 Experiments
Observations

🚀 The bulk of a web-scale dataset can be scanned fast

Most queries are processed <10 seconds, well within the interactive range

Thank You!

