Discussion: Dremel



Some History

 Parallel DB Systems have been around for 30 years prior

» Historical DB companies supporting parallelism include:
— Teradata, Tandem, Informix, Oracle, RedBrick, Sybase, DB2



NoSQL

» Along came NoSQL (early-mid 2000s)

— The idea that databases are slow

— Complaints includeo
* Too slow
* Too much loading time

* Too monolithic and complex
— Instruction manuals of ~500 pages

* Too much heft for “internet scale” applications
* oo expensive
* Too hard to understand



NoSQL

* The story of NoSQL and its intimate relationship with Google

* This is the OLAP story, not the OLTP story

» OLTP story
— BigTaple ('06) => MegaStore ('11) => Spanner, F1 ('12)
— Less consistency => More consistency

— Contemporaries:
* PNUTS, Cassandra, HBase, CouchDB, Dynamo



NoSQL

OLAP story

— MapReduce (04) => Dremel (10)

— Less using pdb principles => More using pdb principles

— By 2010, Google had restricted MapReduce to complex batch
orocessing, with Dremel for interactive analytics

— Contemporaries:

e MapReduce: Hadoop (Yahoo)
» PSQL-on-MapReduce: Pig (Yahoo), Hive (Facebook)
» PSQL-not-on-MapReduce: Impala



Map-Reduce

» 2004: Google published MapReduce.

— Parallel programming paradigm

— Pros:
 Relatively fast
* Imperative
* Many real use-cases

— Cons:
* Checkpointing all intermediate results
* No real logic or optimization
* Very "rigid”, no room for improvement
* Many bottlenecks




Along comes Dremel

« 2010:
— Still not a full-tledged parallel database
— PROJECT-SELECT-AGGREGATE
— What does it lack?



Along comes Dremel

e 2010:

— Still not a full-tledged parallel database
— What does it lack?

« Support for joins
» Support for transactions (it is read-only)
« Support for intelligent partitioning?



Fast-Forward to Today

* Dremel offered as Google BigQuery: one of the top
cloud-native data warehouses

— Won 10 year best paper award in 2020

* Similar ideas adopted by Snowtlake, the #1 cloud data
warehouse

« Related, but slightly different ideas employed by Spark,
and then by Databricks



Conventional Wisdom Didn’t Play Out

e Conventional Wisdom: “Shared Nothing” better than
"Shared Memory” or "Shared Disk”

» However, cloud-native data warehouses ended up
dominating the market all using a shared disk abstraction

— Also known today as disaggregated storage and compute
— Shared nothing = aggregated storage and compute

e Dremel set this trend
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1. INTRODUCTION

Dremel is a distributed system for interactive data analysis that
was first presented at VLDB 2010 [32]. That same year, Google
launched BigQuery, a publicly available analytics service backed
by Dremel. Today, BigQuery is a fully-managed, serverless data
warehouse that enables scalable analytics over petabytes of data.’
It is one of the fastest growing services on the Google Cloud Plat-
form.

A major contribution of papers originating from the industry in
the past decade, including the Dremel paper, is to demonstrate what
kind of systems can be built using state-of-the-art private clouds.
This body of work both reduced the risk of exploring similar routes
and identified viable directions for future research. Introducing the
journal version of the paper [33], Mike Franklin pointed out that it
was ‘“‘eye-opening” to learn that Google engineers routinely anal-
ysed massive data sets with processing throughputs in the range
of 100 billion records per second [20]. His main take-away was
that simply throwing hardware at the problem was not sufficient.
Rather, it was critical to deeply understand the structure of the data
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and how it would be used. Franklin made an on-the-mark predic-
tion that the data volumes described in the paper would soon be-
come relevant to more organizations, given how quickly the “bleed-
ing edge” becomes commonplace in our field. He also called out
various opportunities for optimizations and improvements.

This paper focuses on Dremel’s key ideas and architectural prin-
ciples. Much of the overall system design stood the test of time;
some of these principles turned into major industry trends and are
now considered best practices. Stated in terms of the technol-
ogy trends highlighted in the recently published Seattle Report on
Database Research [1], the main ideas we highlight in this paper
are:

e SQL: [1] reports that all data platforms have embraced SQL-
style APIs as the predominant way to query and retrieve data.
Dremel’s initial SQL-style dialect got generalized as ANSI-
compliant SQL backed by an open-source library and shared
with other Google products, notably Cloud Spanner.’

e Disaggregated compute and storage: The industry has con-
verged on an architecture that uses elastic compute services
to analyze data in cloud storage. This architecture decouples
compute from storage, so each can scale independently.

e [In situ analysis: Data lake repositories have become popu-
lar, in which a variety of compute engines can operate on the
data, to curate it or execute complex SQL queries, and store
the results back in the data lake or send results to other oper-
ational systems. Dremel’s use of a distributed file system and
shared data access utilities allowed MapReduce and other
data processing systems at Google to interoperate seamlessly
with SQL-based analysis.

e Serverless computing: As an alternative to provisioned re-
sources, the industry now offers on-demand resources that
provide extreme elasticity. Dremel was built as a fully-
managed internal service with no upfront provisioning and
pay-per-use economics. This concept was successfully
ported to BigQuery.

Google’s Dremel was one of the first systems that combined a set of
architectural principles that have become a common practice in to-
day’s cloud-native analytics tools, including disaggregated storage
and compute, in situ analysis, and columnar storage for semistruc-
tured data. In this paper, we discuss how these ideas evolved in the
past decade and became the foundation for Google BigQuery.

Dremel 1s a distributed system for interactive data analysis that
was first presented at VLDB 2010 [32]. That same year, Google
launched BigQuery, a publicly available analytics service backed

by Dremel. Today, BigQuery 1s a fully-managed, serverless data
warehouse that enables scalable analytics over petabytes of data.’

It 1s one of the fastest growing services on the Google Cloud Plat-
form.
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Column Stores

For OLAP, column stores are a lot better than row stores
|[dea from the 80s, commercialized as Vertica in 2005.
Key idea: store values for a single column together

All modern cloud data warehouses use columnar
representations, including BigQuery, Snowflake, ...

Why is this better for aggregation/OLAP?



Column Stores

 For OLAP column stores are a lot better than row stores
« Key idea: store values for a single column together

« Why is this better for aggregation?
— Better compression; can pack similar values together better
— Can skip over unnecessary columns
— Much less data read from disk



Column Stores

 When can column stores suffer relative to row stores?



Column Stores

 When can column stores suffer relative to row stores?

— Want to point at a certain data item (e.g., find me the year
where company XXX was established)

— Transactions can be bad:
* Insertions, deletions can be quite terrible
* Writes require multiple accesses



Dremel: Column Encoding

 Turns out, this now lives on as “Parquet”, universally
adopted

* Are there cases where the column encoding scheme
proposed doesn’'t make much sense?



Dremel: Column Encoding

 Turns out, this now lives on as “Parquet”, universally
adopted

* Would this column encoding make sense it:

— All records have a rigid schema?
— Not all records obey the schema?

« Often the case in json/xml — mistakes in data generation

— |f most data "looks the same” with a tew exceptions?



Hierarchical Trees

» What tfactors would you take into account while deciding
the fanout for the hierarchical trees?



Hierarchical Trees

» What tactors would you take into account while deciding the
fanout for the hierarchical trees?

e Too small tanout may do too much unnecessary network
bandwidth for too little gain

* Too large fanout may end up overwhelming one node

— Network bandwidth
— CPU capability

— Local Memory

— Local Disk



