
Discussion: Dremel



Some History

• Parallel DB Systems have been around for 30 years prior
• Historical DB companies supporting parallelism include:
– Teradata, Tandem, Informix, Oracle, RedBrick, Sybase, DB2



NoSQL

• Along came NoSQL (early-mid 2000s)
– The idea that databases are slow
– Complaints included
• Too slow
• Too much loading time
• Too monolithic and complex

– Instruction manuals of ~500 pages

• Too much heft for “internet scale” applications
• Too expensive
• Too hard to understand



NoSQL

• The story of NoSQL and its intimate relationship with Google 
• This is the OLAP story, not the OLTP story
• OLTP story
– BigTable (‘06) => MegaStore (‘11) => Spanner, F1 (‘12)
– Less consistency => More consistency
– Contemporaries: 
• PNUTS, Cassandra, HBase, CouchDB, Dynamo



NoSQL

• OLAP story
–MapReduce (04) => Dremel (10)
– Less using pdb principles => More using pdb principles
– By 2010, Google had restricted MapReduce to complex batch 

processing, with Dremel for interactive analytics
– Contemporaries:
• MapReduce: Hadoop (Yahoo)
• PSQL-on-MapReduce: Pig (Yahoo), Hive (Facebook)
• PSQL-not-on-MapReduce: Impala



Map-Reduce

• 2004: Google published MapReduce. 
– Parallel programming paradigm
– Pros:

• Relatively fast
• Imperative
• Many real use-cases

– Cons:
• Checkpointing all intermediate results 
• No real logic or optimization
• Very “rigid”, no room for improvement
• Many bottlenecks



Along comes Dremel

• 2010:
– Still not a full-fledged parallel database
– PROJECT-SELECT-AGGREGATE
–What does it lack?



Along comes Dremel

• 2010:
– Still not a full-fledged parallel database
–What does it lack?
• Support for joins
• Support for transactions (it is read-only)
• Support for intelligent partitioning?



Fast-Forward to Today

• Dremel offered as Google BigQuery: one of the top 
cloud-native data warehouses
–Won 10 year best paper award in 2020

• Similar ideas adopted by Snowflake, the #1 cloud data 
warehouse

• Related, but slightly different ideas employed by Spark, 
and then by Databricks

9



Conventional Wisdom Didn’t Play Out

• Conventional Wisdom: “Shared Nothing” better than 
“Shared Memory” or ”Shared Disk”

• However, cloud-native data warehouses ended up 
dominating the market all using a shared disk abstraction
– Also known today as disaggregated storage and compute 
– Shared nothing = aggregated storage and compute 

• Dremel set this trend

10



11



Column Stores

• For OLAP, column stores are a lot better than row stores
• Idea from the 80s, commercialized as Vertica in 2005.
• Key idea: store values for a single column together

• All modern cloud data warehouses use columnar 
representations, including BigQuery, Snowflake, …

• Why is this better for aggregation/OLAP?



Column Stores

• For OLAP, column stores are a lot better than row stores
• Key idea: store values for a single column together
• Why is this better for aggregation?
– Better compression; can pack similar values together better
– Can skip over unnecessary columns
–Much less data read from disk



Column Stores

• When can column stores suffer relative to row stores?



Column Stores

• When can column stores suffer relative to row stores?
–Want to point at a certain data item (e.g., find me the year 

where company XXX was established)
– Transactions can be bad:
• Insertions, deletions can be quite terrible
• Writes require multiple accesses



Dremel: Column Encoding

• Turns out, this now lives on as “Parquet”, universally 
adopted

• Are there cases where the column encoding scheme 
proposed doesn’t make much sense?



Dremel: Column Encoding

• Turns out, this now lives on as “Parquet”, universally 
adopted

• Would this column encoding make sense if:
– All records have a rigid schema?
– Not all records obey the schema?
• Often the case in json/xml – mistakes in data generation

– If most data “looks the same” with a few exceptions?



Hierarchical Trees

• What factors would you take into account while deciding 
the fanout for the hierarchical trees?



Hierarchical Trees

• What factors would you take into account while deciding the 
fanout for the hierarchical trees?

• Too small fanout may do too much unnecessary network 
bandwidth for too little gain

• Too large fanout may end up overwhelming one node

– Network bandwidth
– CPU capability
– Local Memory
– Local Disk


