# MacroBase: Prioritizing Attention in Fast Data

Jacob Yim

Role: Paper Author Original paper by Peter Bailis, Edward Gan, Samuel Madden, Deepak Narayanan, Kexin Rong, and Sahaana Suri (SIGMOD 2017)

#### Problem statement

- Data is being stored in increasingly large capacities
- Fast data is automatically generated by machines over time
  - Tends to be especially large in volume
  - e.g. sensor readings, logs from automated processes
- Humans have limited attention that does not grow
- The growth of our data is outpacing our ability to manually inspect it.
- How can we build a system that prioritizes attention by automatically showing users the most important insights about their data?

### Motivating use cases

CAMBRIDGE MOBILE TELEMATICS

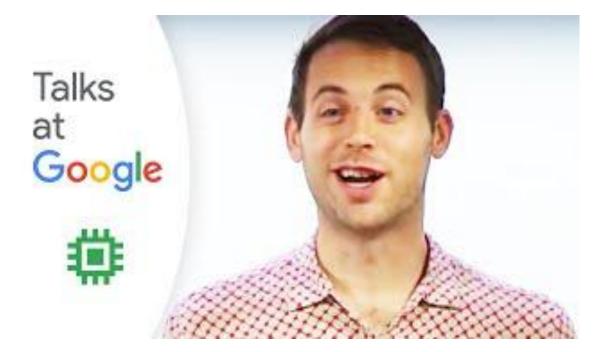
- Mobile applications
  - Cambridge Mobile Telematics uses a mobile app collecting data about drivers
  - MacroBase can help detect bugs on specific devices and firmware
  - CMT actually deployed MacroBase in production, used in evaluation
- Datacenter operations
  - Server outages can be prevented or diagnosed by examining logs
  - Workloads are highly heterogenous, making logs difficult to inspect manually
- Industrial monitoring
  - Sensor readings can be used to identify hazards ahead of time



#### Related work

- Builds upon other data streaming systems (e.g. Storm, StreamBase, IBM Oracle Streams) and inspired by other specialized streaming systems (Gigascope, MCDB)
  - No prior system for classifying and explaining fast data!
- Inspired by work in statistics and machine learning on outlier detection and data explanation, but must adapt to the domain of fast data streaming

#### Demo

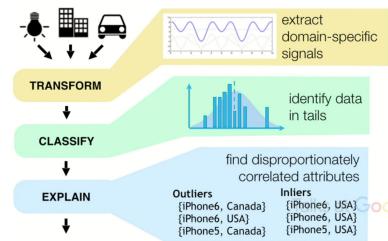


### System architecture

- MacroBase executes queries with *pipelines* of streaming operators
- Fully extensible: users can write their own operators and pipelines
- Three operating modes:
  - GUI allows for interactive exploration
  - One-shot queries can be run programmatically as individual passes
  - Streaming queries can be run over a continuous stream of data

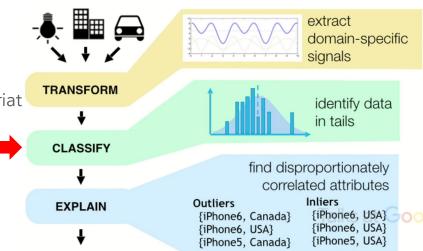
# MacroBase pipeline

- Steps in a MacroBase pipeline:
  - Ingestion: data streams ingested from an external source. Data points contain *metrics* and *attributes*
  - Feature Transformation: optional domain-specific data transformations
  - Classification: data points are labeled based on metrics
  - Explanation: labeled data points are aggregated to produce explanations
  - Presentation: explanations are ranked (default by degree of outlier) and displayed to users



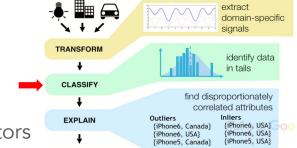
# Classification system

- Default classifier labels outliers in a distribution of points (unsupervised density-based classification)
- Z-score (measure of standard deviations from mean) is not robust to outliers
  - Use median absolute deviation (MAD) for univariat
    - data
  - Minimum covariance determinant (MCD) for multivariate
- Classify all points with a score above some percentile as outliers



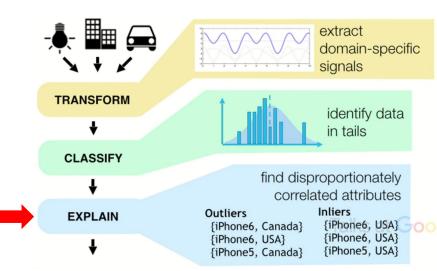
### Classification system

- Problem: how do we efficiently update MAD / MCD estimators as the data changes?
- Adaptable Damped Reservoir (ADR)
  - Use a sample of input data exponentially weighted towards more recently added points
  - Reservoir "decays"
  - Unlike existing techniques, in ADR the decay interval is arbitrary
  - Decay can be time-based or based on number of data points
- ADRs used both to sample input data for retraining model and to sample outlier scores for calculating percentiles



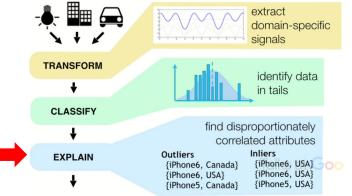
# Explanation system

- Goal: find attributes common to outliers but uncommon to inliers
- Find combinations of attribute values with high *risk ratio*  $\frac{a_o/(a_o + a_i)}{b_o/(b_o + b_i)}$ 
  - Where the combination appears  $a_0$  times in outliers and  $a_i$  times in inliers, and there are  $b_0$  other outliers and  $b_i$  other inliers
  - Quantifies how much more likely a data point of this combination is to be an outlier
- Also find combinations with high *support* (presence in outliers)



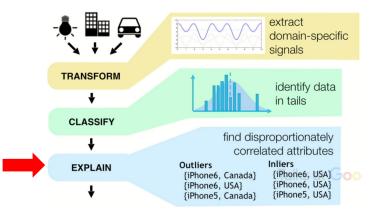
# Explanation system

- Naive approach involves iterating over all outliers and inliers
- Optimizations:
  - Since outliers are fewer than inliers, first find combinations of attributes with support in the outliers, then search the inliers for those combinations
  - Compute risk ratios for individual attributes first, then compute support of combinations of attributes with high risk ratio



# Explanation system

- To stream explanations, use a heavy-hitters sketch called the Amortized Maintenance Counter (AMC)
  - Maintains attributes with top *k* occurrence in the stream
  - Compared to other sketches, is faster to update at the cost of memory usage
- For tracking combinations of attributes, use a tree data structure



#### Evaluation

- Evaluated MacroBase on synthetic and real-world data:
  - On a synthetic dataset, MacroBase correctly identifies causes of outliers with <20% noise
  - Using real-world server data to find anomalous hosts, MacroBase has >85% accuracy on all forms of anomalies
- Additional end-to-end testing on real datasets for throughput and # explanations:

| Queries   |      |         |       |        | Thru w/o Explain (pts/s) |         | Thru w/ Explain (pts/s) |         | # Explanations |     | Jaccard    |
|-----------|------|---------|-------|--------|--------------------------|---------|-------------------------|---------|----------------|-----|------------|
| Dataset   | Name | Metrics | Attrs | Points | One-shot                 | EWS     | One-shot                | EWS     | One-shot       | EWS | Similarity |
| Liquor    | LS   | 1       | 1     | 3.05M  | 1549.7K                  | 967.6K  | 1053.3K                 | 966.5K  | 28             | 33  | 0.74       |
|           | LC   | 2       | 4     |        | 385.9K                   | 504.5K  | 270.3K                  | 500.9K  | 500            | 334 | 0.35       |
| Telecom   | TS   | 1       | 1     | 10M    | 2317.9K                  | 698.5K  | 360.7K                  | 698.0K  | 469            | 1   | 0.00       |
|           | TC   | 5       | 2     |        | 208.2K                   | 380.9K  | 178.3K                  | 380.8K  | 675            | 1   | 0.00       |
| Campaign  | ES   | 1       | 1     | 10M    | 2579.0K                  | 778.8K  | 1784.6K                 | 778.6K  | 2              | 2   | 0.67       |
|           | EC   | 1       | 5     |        | 2426.9K                  | 252.5K  | 618.5K                  | 252.1K  | 22             | 19  | 0.17       |
| Accidents | AS   | 1       | 1     | 430K   | 998.1K                   | 786.0K  | 729.8K                  | 784.3K  | 2              | 2   | 1.00       |
|           | AC   | 3       | 3     |        | 349.9K                   | 417.8K  | 259.0K                  | 413.4K  | 25             | 20  | 0.55       |
| Disburse  | FS   | 1       | 1     | 3.48M  | 1879.6K                  | 1209.9K | 1325.8K                 | 1207.8K | 41             | 38  | 0.84       |
|           | FC   | 1       | 6     |        | 1843.4K                  | 346.7K  | 565.3K                  | 344.9K  | 1710           | 153 | 0.05       |
| CMT       | MS   | 1       | 1     | 10M    | 1958.6K                  | 564.7K  | 354.7K                  | 562.6K  | 46             | 53  | 0.63       |
|           | MC   | 7       | 6     |        | 182.6K                   | 278.3K  | 147.9K                  | 278.1K  | 255            | 98  | 0.29       |

- Case studies show applicability in combining supervised and unsupervised classification, time series data transformation, and video stream processing

#### Future work

- Expand to new domains!
- Designed to be highly flexible for any application involving classifying and explaining fast data, so possibilities are endless