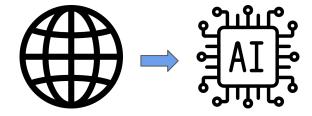
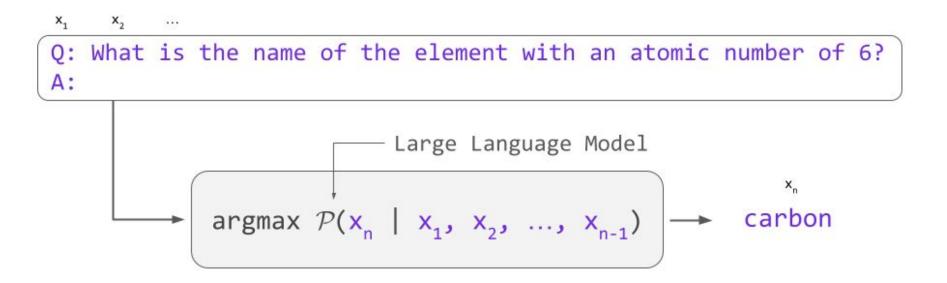
Can Foundation Models Wrangle Your Data?

Avanika Narayan, Ines Chami, Laurel Orr, Simran Arora, Christopher Ré

Sahil Bhatia





Cause & Effect				
Prompt				
1				
k				

```
// Translate from C to Python
int add_one ( int x ){
  int m = 1;
  while ( x & m ) {
    x = x ^ m;
    m <<= 1;
  }
  x = x ^ m;
  return x; }</pre>
```

Model Response

LLM are Few Shot Learners

The three settings we explore for in-context learning

Zero-shot

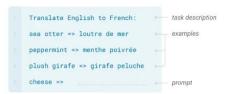
The model predicts the answer given only a natural language description of the task. No gradient updates are performed.

One-shot

In addition to the task description, the model sees a single example of the task. No gradient updates are performed.

Few-shot

In addition to the task description, the model sees a few examples of the task. No gradient updates are performed.



Traditional fine-tuning (not used for GPT-3)

Fine-tuning

The model is trained via repeated gradient updates using a large corpus of example tasks.

Data Wrangling

Is there an error in Country?

Country: England, City: Kyoto?

	Height	Weight	Country	Place	Number of days	Some column
0	12.0	35.0	India	Bengaluru	1.0	NaN
1	NaN	36.0	US	New York	2.0	NaN
2	13.0	32.0	UK	London	NaN	NaN
3	15.0	NaN	France	Paris	4.0	NaN
4	16.0	39.0	US	California	5.0	12.0
5	NaN	NaN	NaN	Mumbai	NaN	NaN
6	NaN	NaN	NaN	NaN	6.0	NaN

Entity Matching

Error Detection

Data Imputation

ML vs LLM for Data Wrangling

Property	Traditional ML	LLM
Task Specific Architecture	Architectural changes and Fine-tuning	Natural language Interface
Hard-Coded Knowledge	Domain knowledge and commonsense reasoning with human engineered rules	Trained on generic data (inherit)
Labeled Data	Massive amounts of labelled data for training	Little to no data (zero-shot, few-shot)

Problem Statement

Can advances in **LLM help** in these hard **data tasks**?

LLMs for Data Task - Serialization

- Convert structured data to text
 - a. Given a table with columns attr, ..., attr, and entry (e) with values val, ..., val,

```
serialize(e) := attr_1 : val_1 ... attr_m : val_m
```

LLMs for Data Task - Naturalization

- Convert structured data to text.
 - a. Given a table with columns attr, ..., attr, and entry (e) with values val, ..., val,

```
serialize(e) := attr_1 : val_1 ... attr_m : val_m
```

2. Convert data tasks to natural language tasks (prompts)

Product A is serialize(e). Product B is serialize(e). Are Product A and Product B the same?

given an entry e and attribute j to infer, we use attr1:val1...attri?

given an entry *e* and attribute *j* to classify as erroneous, we use Is there an error in attr*j* :val*j*?

Entity Matching

Data Imputation

Error Detection

LLMs for Data Task - Demonstration

- 1. Random sample random examples from labelled dataset
- 2. Manual carefully select examples on basis of performance on validation set

Experimental Setup

1. Model - GPT3-175B parameter model

Task	Dataset	Baseline	Eval Metric
Entity Matching	Magellan	Ditto (BERT)	F1 score
Data Transformation	TDE	Search-based Solution	Accuracy
Schema Matching	Synthea	SMAT (attention bi-LSTM)	F1 score
Imputation	Restaurant and Buy	IMP (finetunes RoBERTa)	Accuracy
Error Detection	Hospital and Adult	HoloClean and HoloDetect (ML)	F1 score

Entity Matching

Dataset	Magellan	Ditto	GPT3-175B (k=0)	GPT3-175B (k=10)
Fodors-Zagats	100	100	87.2	100
Beer	78.8	94.37	78.6	100
iTunes-Amazon	91.2	97.06	65.9	98.2
Walmart-Amazon	71.9	86.76	60.6	87.0
DBLP-ACM	98.4	98.99	93.5	96.6
DBLP-Google	92.3	95.60	64.6	83.8
Amazon-Google	49.1	75.58	54.3	63.5

Entity Matching

- 1. LLMs struggle with data domains that contain jargons
 - a. Amazon-Google has product specific identifier in description

name: pcanywhere 11.0 host only cd-rom xp 98 nt w2k me. manufacturer: symantec. price: NULL" and "name: symantec pcanywhere 11.0 windows. manufacturer: NULL. price: 19.99."

Imputation and Error Detection

Task	Imputation		Error Det	ection
Dataset	Restaurant	Buy	Hospital	Adult
HoloClean	33.1	16.2	51.4	54.5
IMP	77.2	96.5	-	-
HoloDetect	-		94.4	99.1
GPT3-175B (k=0)	70.9	84.6	6.9	0.0
GPT3-6.7B (<i>k</i> =10)	80.2	86.2	2.1	99.1
GPT3-175B (<i>k</i> =10)	88.4	98.5	97.8	99.1

Imputation and Error Detection

- 1. LLMs understand how to complete task
- 2. Have encoded knowledge (dependencies between zip codes and address)

Transformation and Schema Matching

Task	Data Tran	Data Transformation		
Dataset	StackOverflow Bing-QueryLogs		Synthea	
Previous SoTA	63.0	32.0	38.5	
GPT3-175B (k=0)	32.7	24.0	0.5	
GPT3-175B (k=3)	65.3	54.0	45.2	

Ablation Study

Prompt Format	Beer	iTunes- Amazon	Walmart- Amazon
Prompt 1 (w. Attr. & Example Select.)	100 ± 0.00	98.2 ± 0.00	88.9 ± 0.00
Prompt 1 (w/o Example Select.)	91.1 ± 0.05	86.6 ± 0.02	65.2 ± 0.04
Prompt 1 (w/o Attr. Select.)	76.9 ± 0.00	94.1 ± 0.00	75.0 ± 0.00
Prompt 1 (w. Attr. & w/o Attr. names)	80.0 ± 0.00	94.5 ± 0.00	84.2 ± 0.00
Prompt 2 (w. Attr. & Example Select.)	96.3 ± 0.00	84.7 ± 0.00	100 ± 0.00

Prompt 1: "Are Product A and Product B the same?"

Prompt 2: "Are Product A and Product B equivalent?"

Problem Statement

Can advances in **LLM help** in these hard **data tasks**?

Future Opportunities

- Natural Interactions
 - a. Systems would be more accessible to non-machine learning experts
- Unstructured Data to Structured
 - a. Organizations with data from streams can organize using LLMs
- 3. Integration in Data Management
 - a. Everything is not text. Lot of actions using GUIs
 - b. Multimodal models are going to be helpful
- 4. Integrate with existing system
 - a. Systematically incorporate with existing data management systems

Challenges

- 1. Domain Specificity
 - a. Highly specialized data
 - b. Fine tuning
- 2. Privacy
 - a. Open-source LLMs which can be fine tuned easily
- 3. Prompt Engineering
 - a. Retrieval augmented
 - b. Automatic prompt engineering